This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-sto...This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
Load frequency regulation is an essential auxiliary service used in dealing with the challenge of frequency stability in power systems that utilize an increasing proportion of wind power.We investigate a load frequenc...Load frequency regulation is an essential auxiliary service used in dealing with the challenge of frequency stability in power systems that utilize an increasing proportion of wind power.We investigate a load frequency control method for multiarea interconnected power systems integrated with wind farms,aimed to eliminate the frequency deviation in each area and the tie-line power deviation between different areas.The method explores the derivative and integral terminal sliding mode control technology to solve the problem of load frequency regulation.Such technology employs the concept of relative degrees.However,the subsystems of wind-integrated interconnected power systems have different relative degrees,complicating the control design.This study develops the derivative and integral terminal sliding-mode-based controllers for these subsystems,realizing the load frequency regulation.Meanwhile,closed-loop stability is guaranteed with the theory of Lyapunov stability.Moreover,both a thermal power system and a wind power system are applied to provide frequency support in this study.Considering both constant and variable external disturbances,several numerical simulations were carried out in a two-area thermal power system with a wind farm.The results demonstrate the validity and feasibility of the developed method.展开更多
The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV...The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.展开更多
The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR ground...The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid...Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid planning and construction, and will make a heavy impact on the safe and reliable operation of power systems. To deal with the diff iculties of large scale wind power dispatch, this paper presents a new automatic generation control (AGC) scheme that involves the participation of wind farms. The scheme is based on ultra-short-term wind power forecast. The author establishes a generation output distribution optimization mode for the power system with wind farms and verif ies the feasibility of the scheme by an example.展开更多
Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar...Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.展开更多
With the development of concentrated wind power areas, new energy’s dispatching problems are more prominent with its fast expansion. However, we can maximize the utilization of wind power under power curtailment cond...With the development of concentrated wind power areas, new energy’s dispatching problems are more prominent with its fast expansion. However, we can maximize the utilization of wind power under power curtailment conditions by optimal wind power dispatching. The paper studies on the basic theories of wind power turbines, and analyses the power’s control and output characteristics of wind turbine, which analyses the double-fed inductor generator’s excellent decoupling control of power and its excellent reactive power output capability. By studying the characteristics of wind power output, this paper provides a strategy for optimal dispatch in wind power generation. The calculation results show that the total active and reactive power output of the wind farm match the request of dispatch center. And the total active loss and total reactive loss is the least in the meantime.展开更多
Nowadays, the concept of power can illuminate the nature of contestation. Indeed, it is apparent that discourse coalitions exist both within the wind sector and the riparian corridors management. In the present study,...Nowadays, the concept of power can illuminate the nature of contestation. Indeed, it is apparent that discourse coalitions exist both within the wind sector and the riparian corridors management. In the present study, a theoretical framework for policy power analysis is presented, while a balanced European and national energy policies representation reveals the positive and negative impacts, towards which both the above two power sources may be attributed. The “power” holistic approach is mainly determined in a wider social-economic, political, and environmental framework. This multidimensional and holistic approach is considered invaluable for humans/consumers, in order them to determine their capacities, priorities and perspectives for viable use of power within the above complex-structured framework. Finally, the study adopts a balanced reassessment of the existing policies, offering tentative proposals for reducing conflicts.展开更多
An active and reactive combined spot price model and the corresponding algorithm are introduced in this paper based on the theory of optimal power flow. Different from the traditional economic dispatch in the field of...An active and reactive combined spot price model and the corresponding algorithm are introduced in this paper based on the theory of optimal power flow. Different from the traditional economic dispatch in the field of spot price, the objective function is to minimize generation costs based on pricing reactive power. Then considering the characteristics of wind turbines, processing methods of wind farms in optimal power flow is discussed. Finally, the feasibility of the model and the algorithm is verified through the simulation results of IEEE 30 system.展开更多
The paper develops a methodology for the optimal sizing of a generic wind farms, focusing primarily on reliability aspects, besides the traditional economic ones. A specific objective function is proposed in order to ...The paper develops a methodology for the optimal sizing of a generic wind farms, focusing primarily on reliability aspects, besides the traditional economic ones. A specific objective function is proposed in order to select the better wind farm configuration, based upon the profits related to the economic trading in the deregulated electric market and the costs due to investment, operation & management, and to system unavailability. This objective function is accurately investigated as a function of the turbines number in order to derive the most convenient alternative, which implies also the optimal choice of the single wind generators size. The ranking coming out from this assessment is then compared with that one established in terms of expected load not supplied. A compromise choice, between the best alternatives provided by the two criteria has finally adopted. A simple numerical application is reported in the last part of the paper for testing the validity of the proposed approach. Also uncertainty aspects in the basic input parameters are taken into account and possible way of dealing with them is briefly illustrated.展开更多
As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of...As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method.展开更多
Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasti...Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.展开更多
The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angu...The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angular stability.This paper proposes an approach for the separate examination of the impact of those affecting factors,i.e.,the change of load flow/configuration and dynamic interactions brought about by the grid connection of the wind farm,on power system smallsignal angular stability.Both cases of grid connection of the wind farm,either displacing synchronous generators or being directly added into the power system,are considered.By using the proposed approach,how much the effect of the change of load flow/configuration brought about by the wind farm can be examined,while the degree of impact of the dynamic interaction of the wind farm with the SGs can be investigated separately.Thus,a clearer picture and better understanding of the power system small-signal angular stability as affected by grid connection of the large-scale wind farm can be achieved.An example of the power system with grid connection of a wind farm is presented to demonstrate the proposed approach.展开更多
China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges ...China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.展开更多
Wind speed dependences on different areas in a wind farm have influences on security and economic operation in power system.In order to simulate the correlation of wind speed series between different positions,this pa...Wind speed dependences on different areas in a wind farm have influences on security and economic operation in power system.In order to simulate the correlation of wind speed series between different positions,this paper applies Copula function and rank correlation matrix methods to measure the coherence of wind speed in a wind farm.The correlated wind sample space is established.According to active power output characteristics of wind turbines,the polymerization model in a wind farm can be achieved.Monte Carlo optimal power flow is applied to IEEE-30 and IEEE-300 bus systems based on the principle of energy saving dispatching.The study shows that the accuracy of outputs is improved,thus reducing the fluctuation ranges in unit generating costs and power flow in branches while considering wind speed polymerization.This approach provides a new method to improve the effectiveness of energy saving dispatching and system operation arrangement.Results have been tested to be effective.展开更多
A distributed active and reactive power control(DARPC)strategy based on the alternating direction method of multipliers(ADMM)is proposed for regional AC transmission system(TS)with wind farms(WFs).The proposed DARPC s...A distributed active and reactive power control(DARPC)strategy based on the alternating direction method of multipliers(ADMM)is proposed for regional AC transmission system(TS)with wind farms(WFs).The proposed DARPC strategy optimizes the power distribution among the WFs to minimize the power losses of the AC TS while tracking the active power reference from the transmission system operator(TSO),and minimizes the voltage deviation of the buses inside the WF from the rated voltage as well as the power losses of the WF collection system.The optimal power flow(OPF)of the TS is relaxed by using the semidefinite programming(SDP)relaxation while the branch flow model is used to model the WF collection system.In the DARPC strategy,the large-scale strongly-coupled optimization problem is decomposed by using the ADMM,which is solved in the regional TS controller and WF controllers in parallel without loss of the global optimality.The boundary information is exchanged between the regional TS controller and WF controllers.Compared with the conventional OPF method of the TS with WFs,the optimality and accuracy of the system operation can be improved.Moreover,the proposed strategy efficiently reduces the computation burden of the TS controller and eliminates the need of a central controller.The protection of the information privacy can be enhanced.A modified IEEE 9-bus system with two WFs consisting of 64 wind turbines(WTs)is used to validate the proposed DARPC strategy.展开更多
To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes a...To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes an intelligent location method for a single-phase grounding fault based on a multiple random forests(multi-RF) algorithm. First, the simulation model is built, and the fundamental amplitudes of the zerosequence currents are extracted by a fast Fourier transform(FFT) to construct the feature set. Then, the random forest classification algorithm is applied to establish the fault section locator. The model is resampled on the basis of the bootstrap method to generate multiple sample subsets, which are used to establish multiple classification and regression tree(CART) classifiers. The CART classifiers use the mean decrease in the node impurity as the feature importance,which is used to mine the relationship between features and fault sections. Subsequently, a fault section is identified by voting on the test results for each classifier. Finally, a multi-RF regression fault locator is built to output the predicted fault distance. Experimental results with PSCAD/EMTDC software show that the proposed method can overcome the shortcomings of a single RF and has the advantage of locating a short hybrid overhead/cable line with multiple branches. Compared with support vector machines(SVMs)and previously reported methods, the proposed method can meet the location accuracy and efficiency requirements of a DFIG-based wind farm better.展开更多
基金supported by the Special Scientific Research Project of the Shaanxi Provincial Education Department (22JK0414)。
文摘This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
基金supported by Ministry of Science and Technology of Peoples Republic of China(2019YFE0104800)the Joint Funds of the National Natural Science Foundation of China(U1865101)。
文摘Load frequency regulation is an essential auxiliary service used in dealing with the challenge of frequency stability in power systems that utilize an increasing proportion of wind power.We investigate a load frequency control method for multiarea interconnected power systems integrated with wind farms,aimed to eliminate the frequency deviation in each area and the tie-line power deviation between different areas.The method explores the derivative and integral terminal sliding mode control technology to solve the problem of load frequency regulation.Such technology employs the concept of relative degrees.However,the subsystems of wind-integrated interconnected power systems have different relative degrees,complicating the control design.This study develops the derivative and integral terminal sliding-mode-based controllers for these subsystems,realizing the load frequency regulation.Meanwhile,closed-loop stability is guaranteed with the theory of Lyapunov stability.Moreover,both a thermal power system and a wind power system are applied to provide frequency support in this study.Considering both constant and variable external disturbances,several numerical simulations were carried out in a two-area thermal power system with a wind farm.The results demonstrate the validity and feasibility of the developed method.
文摘The installed capacity of a large scale wind power plant will be up to a number of hundreds MW, and the wind power is transmitted to load centers through long distance transmission lines with 220 kV, 500 kV, or 750 kV. Therefore, it is necessary not only considering the power transmission line between a wind power plant and the first connection node of the power network, but also the power network among the group of those wind power plants in a wind power base, the integration network from the base to the existed grids, as well as the distribution and consumption of the wind power generation by loads. Meanwhile, the impact of wind power stochastic fluctuation on power systems must be studied. In recent years, wind power prediction technology has been studied by the utilities and wind power plants. As a matter of fact, some European countries have used this prediction technology as a tool in national power dispatch centers and wind power companies.
基金This paper is supported in part by the National Natural Science Foundations of China,and the Major Science and Technology Projects in Yunnan Province under Grant Nos.51667010,51807085,and 202002AF080001.
文摘The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
文摘Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid planning and construction, and will make a heavy impact on the safe and reliable operation of power systems. To deal with the diff iculties of large scale wind power dispatch, this paper presents a new automatic generation control (AGC) scheme that involves the participation of wind farms. The scheme is based on ultra-short-term wind power forecast. The author establishes a generation output distribution optimization mode for the power system with wind farms and verif ies the feasibility of the scheme by an example.
文摘Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.
文摘With the development of concentrated wind power areas, new energy’s dispatching problems are more prominent with its fast expansion. However, we can maximize the utilization of wind power under power curtailment conditions by optimal wind power dispatching. The paper studies on the basic theories of wind power turbines, and analyses the power’s control and output characteristics of wind turbine, which analyses the double-fed inductor generator’s excellent decoupling control of power and its excellent reactive power output capability. By studying the characteristics of wind power output, this paper provides a strategy for optimal dispatch in wind power generation. The calculation results show that the total active and reactive power output of the wind farm match the request of dispatch center. And the total active loss and total reactive loss is the least in the meantime.
文摘Nowadays, the concept of power can illuminate the nature of contestation. Indeed, it is apparent that discourse coalitions exist both within the wind sector and the riparian corridors management. In the present study, a theoretical framework for policy power analysis is presented, while a balanced European and national energy policies representation reveals the positive and negative impacts, towards which both the above two power sources may be attributed. The “power” holistic approach is mainly determined in a wider social-economic, political, and environmental framework. This multidimensional and holistic approach is considered invaluable for humans/consumers, in order them to determine their capacities, priorities and perspectives for viable use of power within the above complex-structured framework. Finally, the study adopts a balanced reassessment of the existing policies, offering tentative proposals for reducing conflicts.
文摘An active and reactive combined spot price model and the corresponding algorithm are introduced in this paper based on the theory of optimal power flow. Different from the traditional economic dispatch in the field of spot price, the objective function is to minimize generation costs based on pricing reactive power. Then considering the characteristics of wind turbines, processing methods of wind farms in optimal power flow is discussed. Finally, the feasibility of the model and the algorithm is verified through the simulation results of IEEE 30 system.
文摘The paper develops a methodology for the optimal sizing of a generic wind farms, focusing primarily on reliability aspects, besides the traditional economic ones. A specific objective function is proposed in order to select the better wind farm configuration, based upon the profits related to the economic trading in the deregulated electric market and the costs due to investment, operation & management, and to system unavailability. This objective function is accurately investigated as a function of the turbines number in order to derive the most convenient alternative, which implies also the optimal choice of the single wind generators size. The ranking coming out from this assessment is then compared with that one established in terms of expected load not supplied. A compromise choice, between the best alternatives provided by the two criteria has finally adopted. A simple numerical application is reported in the last part of the paper for testing the validity of the proposed approach. Also uncertainty aspects in the basic input parameters are taken into account and possible way of dealing with them is briefly illustrated.
基金supported by the National Natural Science Foundation of China(No.51507080)the Science and Technology Project of State Grid Corporation of China(5228001600DT)
文摘As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method.
基金funded by National Basic Research Program of China(973 Program)(No.2013CB228201)National Natural Science Foundation of China(No.51307017)
文摘Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.
基金supported by the National Basic Research Program of China (973 Program) (2012CB215204)the key project of the SKLAEPS and the international collaborative project jointly funded by the NSFC (51311122) Chinathe EPSRC,UK.
文摘The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angular stability.This paper proposes an approach for the separate examination of the impact of those affecting factors,i.e.,the change of load flow/configuration and dynamic interactions brought about by the grid connection of the wind farm,on power system smallsignal angular stability.Both cases of grid connection of the wind farm,either displacing synchronous generators or being directly added into the power system,are considered.By using the proposed approach,how much the effect of the change of load flow/configuration brought about by the wind farm can be examined,while the degree of impact of the dynamic interaction of the wind farm with the SGs can be investigated separately.Thus,a clearer picture and better understanding of the power system small-signal angular stability as affected by grid connection of the large-scale wind farm can be achieved.An example of the power system with grid connection of a wind farm is presented to demonstrate the proposed approach.
基金supported in part by Chinese National Key Technologies R&D Program(2013BAA01B03)National Natural Science Foundation of China(51190101)industrial project of State Grid Corporation of China(No.NY71-13-043).
文摘China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.
文摘Wind speed dependences on different areas in a wind farm have influences on security and economic operation in power system.In order to simulate the correlation of wind speed series between different positions,this paper applies Copula function and rank correlation matrix methods to measure the coherence of wind speed in a wind farm.The correlated wind sample space is established.According to active power output characteristics of wind turbines,the polymerization model in a wind farm can be achieved.Monte Carlo optimal power flow is applied to IEEE-30 and IEEE-300 bus systems based on the principle of energy saving dispatching.The study shows that the accuracy of outputs is improved,thus reducing the fluctuation ranges in unit generating costs and power flow in branches while considering wind speed polymerization.This approach provides a new method to improve the effectiveness of energy saving dispatching and system operation arrangement.Results have been tested to be effective.
基金supported in part by Technical University of Denmark(DTU)in part by China Scholarship Council(No.201806130202)。
文摘A distributed active and reactive power control(DARPC)strategy based on the alternating direction method of multipliers(ADMM)is proposed for regional AC transmission system(TS)with wind farms(WFs).The proposed DARPC strategy optimizes the power distribution among the WFs to minimize the power losses of the AC TS while tracking the active power reference from the transmission system operator(TSO),and minimizes the voltage deviation of the buses inside the WF from the rated voltage as well as the power losses of the WF collection system.The optimal power flow(OPF)of the TS is relaxed by using the semidefinite programming(SDP)relaxation while the branch flow model is used to model the WF collection system.In the DARPC strategy,the large-scale strongly-coupled optimization problem is decomposed by using the ADMM,which is solved in the regional TS controller and WF controllers in parallel without loss of the global optimality.The boundary information is exchanged between the regional TS controller and WF controllers.Compared with the conventional OPF method of the TS with WFs,the optimality and accuracy of the system operation can be improved.Moreover,the proposed strategy efficiently reduces the computation burden of the TS controller and eliminates the need of a central controller.The protection of the information privacy can be enhanced.A modified IEEE 9-bus system with two WFs consisting of 64 wind turbines(WTs)is used to validate the proposed DARPC strategy.
基金supported in part by the National Natural Science Foundation of China (No. 51677072)。
文摘To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes an intelligent location method for a single-phase grounding fault based on a multiple random forests(multi-RF) algorithm. First, the simulation model is built, and the fundamental amplitudes of the zerosequence currents are extracted by a fast Fourier transform(FFT) to construct the feature set. Then, the random forest classification algorithm is applied to establish the fault section locator. The model is resampled on the basis of the bootstrap method to generate multiple sample subsets, which are used to establish multiple classification and regression tree(CART) classifiers. The CART classifiers use the mean decrease in the node impurity as the feature importance,which is used to mine the relationship between features and fault sections. Subsequently, a fault section is identified by voting on the test results for each classifier. Finally, a multi-RF regression fault locator is built to output the predicted fault distance. Experimental results with PSCAD/EMTDC software show that the proposed method can overcome the shortcomings of a single RF and has the advantage of locating a short hybrid overhead/cable line with multiple branches. Compared with support vector machines(SVMs)and previously reported methods, the proposed method can meet the location accuracy and efficiency requirements of a DFIG-based wind farm better.