The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the lo...Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the longest bridge in China and the third longest in the world. During the last four years, the RSB has suffered from typhoons and strong northern winds on more than ten occasions. To determine the strong wind characteristics of the RSB, wind measurement data obtained from field tests during strong winds and data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS) of the RSB were combined to analyze the wind speed and direction, variation in wind speed with height, turbulence intensity, turbulence integral length, wind friction speed and the power spectrum. Comparative studies on the characteristics of these different strong winds were carried out based on the current wind-resistant design specification for highway bridges. Results showed that some regularity in wind characteristics can be found in these different typhoons passing through the RSB. The difference between a strong northern wind and a typhoon is relatively clear, and in summer the typhoon is the dominant wind load acting on the RSB. In addition, there were some differences between the measured strong wind characteristics and the values suggested by the specification, especially in respect to turbulence intensity and turbulence integral length. Results provide measurement data for establishing a strong wind characteristic database for the RSB and for determining the strong wind characteristic parameter values of this coastal area in east China.展开更多
As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon...As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon Muifa is analyzed in detail to obtain the wind characteristics, including the mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence, etc. The correlated mean wind speeds at the two heights show the reliability of recorded wind data as well as the variation of wind speed with height. Turbulence inten- sities and gust factors fluctuate in a similar way. The values of inte- gral scales are sensitive in different case. The measured power spec- tra are particularly compared with Kaimal spectrum, Teunissen spectrum, Harris spectrum, and Davenport spectrum. The results show that the measured spectra cannot fit the code-suggested spectra very well, which exhibits the demand of more accurate spectra. Conclusions obtained in this article can provide references for wind resistance desima of suoer-long-soan cable-staved brides.展开更多
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
基金Project supported by the National Natural Science Foundation of China (Nos. 50725828, 50908046, and 50978056)the National Science & Technology Pillar Program (No. 2006BAJ03B05)the PhD Program Foundation of MOE (No. 200802861012), China
文摘Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the longest bridge in China and the third longest in the world. During the last four years, the RSB has suffered from typhoons and strong northern winds on more than ten occasions. To determine the strong wind characteristics of the RSB, wind measurement data obtained from field tests during strong winds and data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS) of the RSB were combined to analyze the wind speed and direction, variation in wind speed with height, turbulence intensity, turbulence integral length, wind friction speed and the power spectrum. Comparative studies on the characteristics of these different strong winds were carried out based on the current wind-resistant design specification for highway bridges. Results showed that some regularity in wind characteristics can be found in these different typhoons passing through the RSB. The difference between a strong northern wind and a typhoon is relatively clear, and in summer the typhoon is the dominant wind load acting on the RSB. In addition, there were some differences between the measured strong wind characteristics and the values suggested by the specification, especially in respect to turbulence intensity and turbulence integral length. Results provide measurement data for establishing a strong wind characteristic database for the RSB and for determining the strong wind characteristic parameter values of this coastal area in east China.
基金Supported by the National Natural Science Foundation of China(50908046,50978056)the Teaching and Scientific Research Fund for Excellent Young Teachers of Southeast University(3205001101)+1 种基金the Basic Scientific andResearch Fund of Southeast University(Seucx-201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions,China
文摘As a cable-stayed bridge with the longest main span, the Sutong Bridge faces the threat of typhoons every year. Based on field measured data measured at the top of the tower and at the mid-span by anemometers, Typhoon Muifa is analyzed in detail to obtain the wind characteristics, including the mean wind speed and direction, turbulence intensity and gust factor, power spectral density and integral scale of turbulence, etc. The correlated mean wind speeds at the two heights show the reliability of recorded wind data as well as the variation of wind speed with height. Turbulence inten- sities and gust factors fluctuate in a similar way. The values of inte- gral scales are sensitive in different case. The measured power spec- tra are particularly compared with Kaimal spectrum, Teunissen spectrum, Harris spectrum, and Davenport spectrum. The results show that the measured spectra cannot fit the code-suggested spectra very well, which exhibits the demand of more accurate spectra. Conclusions obtained in this article can provide references for wind resistance desima of suoer-long-soan cable-staved brides.