A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizon...A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizontal directions.With the Euler-Lagrange method,the coupled governing equations of the OWTENG are established and subsequently validated by experimental tests.The vibrational properties and output performance of the OWTENG for varying wind speeds are analyzed,demonstrating its effectiveness in capturing wind energy across a broad range of wind speeds(from 2.20 m/s to 8.84 m/s),and the OWTENG achieves its peak output power of 106.3μW at a wind speed of 5.72 m/s.Furthermore,the OWTENG maintains a steady output power across various wind directions within the speed range of 2.20 m/s to 7.63 m/s.Nevertheless,when the wind speed exceeds 7.63 m/s,the vibrational characteristics of the sphere shift based on the wind direction,leading to fluctuations in the OWTENG's output power.This research presents an innovative approach for designing vibrational triboelectric nanogenerators,offering valuable insights into harvesting wind energy from diverse directions and speeds.展开更多
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform...Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena i...Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
Deformation and vibration of twig-connected sin- gle leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynami...Deformation and vibration of twig-connected sin- gle leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynamic prob- lem. In case the front surface facing the wind and with an in- crease of Reynolds number, the leaf experiences static defor- mation, large amplitude and low frequency sway, reconfigu- ration to delta wing shape, flapping of tips, high frequency vibration of whole leaf blade, recovery of delta wing shape, and twig-leaf coupling vibration. Abrupt changes from one state to another occur at critical Reynolds numbers. In case the back surface facing the wind, the large amplitude and low frequency sway does not occur, the recovered delta wing shape is replaced by a conic shape, and the critical Reynolds numbers of vibrations are higher than the ones correspond- ing to the case with the front surface facing the wind. A pair of ram-horn vortex is observed behind the delta wing shaped leaf. A single vortex is found downstream of the conic shaped leaf. A lift is induced by the vortex, and this lift helps leaf to adjust position and posture, stabilize blade distortion and reduce drag and vibration.展开更多
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle t...The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.展开更多
To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of damp...To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.展开更多
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination o...The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination of WAWS(Weighted Amplitude Wavelet Superposition) and FFT(Fast Fourier Transformation) was introduced to simulate wind velocity time series of hundreds of spatial points simultaneously. The structural shape factors of wind load was obtained from wind tunnel model test. The wind vibration factor based on structural displacement response was investigated. After comparing the computational results with wind tunnel model test data, it was found out that the two results accord with each other if wind comes from 0° direction angle, but are quite different if wind comes from 180° direction angle in the area blocked off by airport terminals. The possible reasons of this difference were analyzed. Haar wavelet was used to transform and analyze wind velocity time series and structural wind-induced dynamic responses. The relationship between exciting wind loads and structural responses was studied in time and frequency domains.展开更多
In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines,a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-b...In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines,a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-based interferometric ra-dar(GBIR).First,the working principle and unique advantages of the GBIR system are introduced.Second,the offshore wind turbines in Rongcheng,Shandong Province are selected as the monitoring objects for vibration safety monitoring,and the GPRI-II portable radar interferometer is used for the health diagnosis of these wind turbines.Finally,the interpretation method and key processing flow of data acquisition are described in detail.This experiment shows that the GBIR system can accurately identify the millimeter-scale vibration deformation of offshore wind turbines and can quickly obtain overall time series deformation images of the target bodies,which demonstrate the high-precision deformation monitoring ability of the GBIR technology.The accuracy meets the requirements of wind turbine vibration monitoring,and the method is an effective spatial deformation monitoring means for high-rise and dynamic targets.This study is beneficial for the further enrichment and improvement of the technical system of wind turbine vibration safety monitoring in China.It also provides data and technical support for offshore power engineering management and control,health diagnosis,and disaster prevention and mitigation.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate...In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate solutions of wind turbine system.The proportional-derivative controller was applied for reducing the oscillations of the controlled system.Adding the controller to single degree of freedom system equation is responsible for energy transfers in offshore wind turbine tower system.The steady state solution of stability at worst resonance cases is studied and examined.The offshore wind turbine system behavior was studied numerically at its different parameters values.Furthermore,the response and numerical results were obtained and discussed.The stability is also analyzed using technique of phase plane and equations of frequency response.In addition,the numerical results and comparison between analytical and numerical solutions were obtained with MAPLE and MATLAB algorithms.展开更多
Rolling element bearings are critical parts of modern wind turbines as they carry the loads of the turning structure and the wind force. The stochastic nature of the wind loads makes it difficult to estimate the usefu...Rolling element bearings are critical parts of modern wind turbines as they carry the loads of the turning structure and the wind force. The stochastic nature of the wind loads makes it difficult to estimate the useful operational life of the bearings. Condition monitoring of these bearings in a real time environment could be very helpful in estimating their performance and in scheduling maintenance actions when a condition-based maintenance strategy is followed. This procedure can be successfully implemented by using vibration analysis in the time domain or in the frequency domain, giving useful results about the current condition of bearings and the location of potential faults. Permanently located transducers on proper positions on the bearings’ housings can be used in order to collect, process and evaluate real time measurements and provide information about the bearing’s performance. In this work, a test rig is utilized in order to evaluate the performance of rolling bearings. The results of the experimentation are satisfactory and the progress of fatigue failures can be predicted through vibration analysis techniques showing that implementation in real scale may be useful.展开更多
Maintenance for wind turbines has been transformed using supervised machine learning techniques. This method of automatic and autonomous learning can identify, monitor, and detect electrical and mechanical components ...Maintenance for wind turbines has been transformed using supervised machine learning techniques. This method of automatic and autonomous learning can identify, monitor, and detect electrical and mechanical components of wind turbines and predict, detect, and anticipate their degeneration. Using a machine learning classifier and frequency analysis, we simulate two failure states caused by bearing vibrations. Implementing KNN facilitates efficient monitoring, monitoring, and fault-finding for wind turbines. It is possible to reduce downtime, anticipate breakdowns, and import offshore aspects through these technologies.展开更多
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t...The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge.展开更多
In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration mai...In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration main frequency, peak acceleration and peak velocity are analyzed. The vibration acting time is very short, the vertical average vibration acting time increases obviously with distance increasing, and the horizontal average vibration time does hardly change. The main frequency of vibration is at 4.60 - 24.90 Hz, which depends on the soil properties and soil layer distribution. The peak acceleration and peak velocity space distribution are similar. The maximum of horizontal acceleration peak is close to vertical velocity peak, and is near to 51 g under rammer. The maximum of horizontal velocity peak is close to vertical velocity peak, and is near to 54 m/s under rammer. The peak acceleration and velocity are rapidly attenuated, but the vertical peak acceleration and peak velocity are slowly attenuated than horizontal direction. The effective treating depth arrives 13 m for wind-blown wind, peak acceleration is 1.8 g or so, and peak velocity is 2.1 m/s or so. Horizontal treating range is 2.6 times of rammer diameter, and vertical treating range is 5.65 times of rammer diameter.展开更多
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I...The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes.展开更多
To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d...To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12202151 and 12272140)。
文摘A unique oscillating wind-driven triboelectric nanogenerator(OWTENG)based on the sphere's vortex-induced vibration(VIV)behavior is proposed in this study,which can harvest wind energy across a multitude of horizontal directions.With the Euler-Lagrange method,the coupled governing equations of the OWTENG are established and subsequently validated by experimental tests.The vibrational properties and output performance of the OWTENG for varying wind speeds are analyzed,demonstrating its effectiveness in capturing wind energy across a broad range of wind speeds(from 2.20 m/s to 8.84 m/s),and the OWTENG achieves its peak output power of 106.3μW at a wind speed of 5.72 m/s.Furthermore,the OWTENG maintains a steady output power across various wind directions within the speed range of 2.20 m/s to 7.63 m/s.Nevertheless,when the wind speed exceeds 7.63 m/s,the vibrational characteristics of the sphere shift based on the wind direction,leading to fluctuations in the OWTENG's output power.This research presents an innovative approach for designing vibrational triboelectric nanogenerators,offering valuable insights into harvesting wind energy from diverse directions and speeds.
基金supported by the National Natural Science Foundation of China (52071055)the Fundamental Research Funds for the Central Universities (Grant No.DUT22QN237).
文摘Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金supported by the National Natural Science Foundation of China(51866012)the Major Project of the Natural Science Foundation of Inner Mongolia Autonomous Region(2018ZD08)the Fundamental Research Funds for the Central Universities of Inner Mongolia Autonomous Region(JY20220037).
文摘Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
基金supported by the National Natural Science Foundation of China (10872188 and 11172286)
文摘Deformation and vibration of twig-connected sin- gle leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynamic prob- lem. In case the front surface facing the wind and with an in- crease of Reynolds number, the leaf experiences static defor- mation, large amplitude and low frequency sway, reconfigu- ration to delta wing shape, flapping of tips, high frequency vibration of whole leaf blade, recovery of delta wing shape, and twig-leaf coupling vibration. Abrupt changes from one state to another occur at critical Reynolds numbers. In case the back surface facing the wind, the large amplitude and low frequency sway does not occur, the recovered delta wing shape is replaced by a conic shape, and the critical Reynolds numbers of vibrations are higher than the ones correspond- ing to the case with the front surface facing the wind. A pair of ram-horn vortex is observed behind the delta wing shaped leaf. A single vortex is found downstream of the conic shaped leaf. A lift is induced by the vortex, and this lift helps leaf to adjust position and posture, stabilize blade distortion and reduce drag and vibration.
基金supported by a grant[MPSS-NH-2015-78]through the DisasterSafety Management Institute funded by Ministry of Public Safety and Security of Korean government
文摘The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
文摘To minimize the excessive vibration and prolong the fatigue life of the offshore wind turbine systems, it is of value to control the vibration that is induced within the structure by implementing certain kinds of dampers. In this paper, a ball vibration absorber (BVA) is experimentally investigated through a series of shake table tests on a 1/13 scaled wind turbine model. The reductions in top displacement, top acceleration, bottom stress and platform stress of the wind turbine tower system subjected to earthquakes and equivalent wind-wave loads, respectively, with a ball absorber are examined. Cases of the tower with rotating blades are also investigated to validate the efficacy of this damper in mitigating the vibration of an operating wind turbine. The experimental results indicate that the dynamic performance of the tested wind turbine model with a ball absorber is significantly improved compared with that of the uncontrolled structure in terms of the peak response reduction.
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.
基金National Natural Science Foundation ofChina (No.50278054) and the Fund ofScience and Technology Development ofShanghai (No.04JC14059)
文摘The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination of WAWS(Weighted Amplitude Wavelet Superposition) and FFT(Fast Fourier Transformation) was introduced to simulate wind velocity time series of hundreds of spatial points simultaneously. The structural shape factors of wind load was obtained from wind tunnel model test. The wind vibration factor based on structural displacement response was investigated. After comparing the computational results with wind tunnel model test data, it was found out that the two results accord with each other if wind comes from 0° direction angle, but are quite different if wind comes from 180° direction angle in the area blocked off by airport terminals. The possible reasons of this difference were analyzed. Haar wavelet was used to transform and analyze wind velocity time series and structural wind-induced dynamic responses. The relationship between exciting wind loads and structural responses was studied in time and frequency domains.
基金This research was funded by the Public Science and Technology Research Funds Projects of Ocean(No.201405028)the Scientific Research Project of Shandong Electric Power Engineering Consulting Institute Co.,Ltd.(No.2020-059).
文摘In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines,a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-based interferometric ra-dar(GBIR).First,the working principle and unique advantages of the GBIR system are introduced.Second,the offshore wind turbines in Rongcheng,Shandong Province are selected as the monitoring objects for vibration safety monitoring,and the GPRI-II portable radar interferometer is used for the health diagnosis of these wind turbines.Finally,the interpretation method and key processing flow of data acquisition are described in detail.This experiment shows that the GBIR system can accurately identify the millimeter-scale vibration deformation of offshore wind turbines and can quickly obtain overall time series deformation images of the target bodies,which demonstrate the high-precision deformation monitoring ability of the GBIR technology.The accuracy meets the requirements of wind turbine vibration monitoring,and the method is an effective spatial deformation monitoring means for high-rise and dynamic targets.This study is beneficial for the further enrichment and improvement of the technical system of wind turbine vibration safety monitoring in China.It also provides data and technical support for offshore power engineering management and control,health diagnosis,and disaster prevention and mitigation.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金This work was supported by Taif University under research grant 1-439-6067.The authors would like to acknowledge the scientific support provided by the university.
文摘In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate solutions of wind turbine system.The proportional-derivative controller was applied for reducing the oscillations of the controlled system.Adding the controller to single degree of freedom system equation is responsible for energy transfers in offshore wind turbine tower system.The steady state solution of stability at worst resonance cases is studied and examined.The offshore wind turbine system behavior was studied numerically at its different parameters values.Furthermore,the response and numerical results were obtained and discussed.The stability is also analyzed using technique of phase plane and equations of frequency response.In addition,the numerical results and comparison between analytical and numerical solutions were obtained with MAPLE and MATLAB algorithms.
文摘Rolling element bearings are critical parts of modern wind turbines as they carry the loads of the turning structure and the wind force. The stochastic nature of the wind loads makes it difficult to estimate the useful operational life of the bearings. Condition monitoring of these bearings in a real time environment could be very helpful in estimating their performance and in scheduling maintenance actions when a condition-based maintenance strategy is followed. This procedure can be successfully implemented by using vibration analysis in the time domain or in the frequency domain, giving useful results about the current condition of bearings and the location of potential faults. Permanently located transducers on proper positions on the bearings’ housings can be used in order to collect, process and evaluate real time measurements and provide information about the bearing’s performance. In this work, a test rig is utilized in order to evaluate the performance of rolling bearings. The results of the experimentation are satisfactory and the progress of fatigue failures can be predicted through vibration analysis techniques showing that implementation in real scale may be useful.
文摘Maintenance for wind turbines has been transformed using supervised machine learning techniques. This method of automatic and autonomous learning can identify, monitor, and detect electrical and mechanical components of wind turbines and predict, detect, and anticipate their degeneration. Using a machine learning classifier and frequency analysis, we simulate two failure states caused by bearing vibrations. Implementing KNN facilitates efficient monitoring, monitoring, and fault-finding for wind turbines. It is possible to reduce downtime, anticipate breakdowns, and import offshore aspects through these technologies.
基金the Hong Kong Polytechnic University and the Hong Kong Research Grant Council.
文摘The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge.
文摘In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration main frequency, peak acceleration and peak velocity are analyzed. The vibration acting time is very short, the vertical average vibration acting time increases obviously with distance increasing, and the horizontal average vibration time does hardly change. The main frequency of vibration is at 4.60 - 24.90 Hz, which depends on the soil properties and soil layer distribution. The peak acceleration and peak velocity space distribution are similar. The maximum of horizontal acceleration peak is close to vertical velocity peak, and is near to 51 g under rammer. The maximum of horizontal velocity peak is close to vertical velocity peak, and is near to 54 m/s under rammer. The peak acceleration and velocity are rapidly attenuated, but the vertical peak acceleration and peak velocity are slowly attenuated than horizontal direction. The effective treating depth arrives 13 m for wind-blown wind, peak acceleration is 1.8 g or so, and peak velocity is 2.1 m/s or so. Horizontal treating range is 2.6 times of rammer diameter, and vertical treating range is 5.65 times of rammer diameter.
基金National Natural Science Foundation of China under Grant Nos.52001052 and 51939002。
文摘The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes.
基金supported by the National Natural Science Foundation Project under Grant Numbers[51966018,51466015].
文摘To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.