High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef...High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.展开更多
Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing ...Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
文摘High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.
文摘Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.