Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is ...Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather foreca...This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.展开更多
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp...Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.展开更多
Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasti...Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.展开更多
As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy....As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.展开更多
Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented consi...Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented considering not only the nonlinear and non-stationary characteristics of forecasting errors but also the field application adaptability problems. The kernel recursive least-squares(KRLS) model is introduced to meet the requirements of online error correction. An iterative error modification approach is designed in this paper to yield the potential benefits of statistical models, including a set of error forecasting models. The teleconnection in forecasting errors from aggregated wind farms serves as the physical background to choose the hybrid regression variables. A case study based on field data is found to validate the properties of the proposed approach. The results show that our approach could effectively extend the modifying horizon of statistical models and has a better performance than the traditional linear method for amending short-term forecasts.展开更多
With the technical development of wind power forecasting,making wind power generation schedule in power systems become an inevitable tendency.This paper proposes a new dispatch method for wind farm(WF)cluster by consi...With the technical development of wind power forecasting,making wind power generation schedule in power systems become an inevitable tendency.This paper proposes a new dispatch method for wind farm(WF)cluster by considering wind power forecasting errors.A probability distribution model of wind power forecasting errors and a mathematic expectation of the power shortage caused by forecasting errors are established.Then,the total mathematic expectation of power shortage from all WFs is minimized.Case study with respect to power dispatch in a WF cluster is conducted using forecasting and actual wind power data within 30 days from sites located at Gansu Province.Compared with the variable proportion method,the power shortage of the WF cluster caused by wind power forecasting errors is reduced.Along with the increment of wind power integrated into power systems,the method positively influences future wind power operation.展开更多
As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally...As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally described the uncertainty of wind power forecast errors(WPFEs) based on normal distribution or other standard distribution models, which only characterize the aleatory uncertainty. In fact, epistemic uncertainty in WPFE modeling due to limited data and knowledge should also be addressed. This paper proposes a multi-source information fusion method(MSIFM) to quantify WPFEs when considering both aleatory and epistemic uncertainties. An extended focal element(EFE) selection method based on the adequacy of historical data is developed to consider the characteristics of WPFEs. Two supplementary expert information sources are modeled to improve the accuracy in the case of insufficient historical data. An operation reliability evaluation technique is also developed considering the proposed WPFE model. Finally,a double-layer Monte Carlo simulation method is introduced to generate a time-series output of the wind power. The effectiveness and accuracy of the proposed MSIFM are demonstrated through simulation results.展开更多
文摘Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
文摘This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.
基金supported by China Three Gorges Corporation(Key technology research and demonstration application of large-scale source-net-load-storage integration under the vision of carbon neutrality)Fundamental Research Funds for the Central Universities(2020MS021).
文摘Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.
基金funded by National Basic Research Program of China(973 Program)(No.2013CB228201)National Natural Science Foundation of China(No.51307017)
文摘Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.
基金Supported by the National Science and Technology Basic Work Project of China Meteorological Administration(2005DKA31700-06)Innovation Fund of Public Meteorological Service Center of China Meteorological Administration(M2020013)。
文摘As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.
基金partly supported by National Natural Science Foundation of China(No.51190101)science and technology project of State Grid,Research on the combined planning method for renewable power base based on multi-dimensional characteristics of wind and solar energy
文摘Forecasting error amending is a universal solution to improve short-term wind power forecasting accuracy no matter what specific forecasting algorithms are applied. The error correction model should be presented considering not only the nonlinear and non-stationary characteristics of forecasting errors but also the field application adaptability problems. The kernel recursive least-squares(KRLS) model is introduced to meet the requirements of online error correction. An iterative error modification approach is designed in this paper to yield the potential benefits of statistical models, including a set of error forecasting models. The teleconnection in forecasting errors from aggregated wind farms serves as the physical background to choose the hybrid regression variables. A case study based on field data is found to validate the properties of the proposed approach. The results show that our approach could effectively extend the modifying horizon of statistical models and has a better performance than the traditional linear method for amending short-term forecasts.
基金This work was supported by the Nation High Technology R&D Program of China(No.2011AA05A104)funded by Ministry of Science and Technology,and the Key Technological Projects“Research on Integrated Supervisory and Control Technolo-gies of Wind Farm Containing Wind Power Prediction System”“Application and Research on the Key Techniques for Large-scale Grid Friendly Wind Farm”funded by State Grid Corporation of China。
文摘With the technical development of wind power forecasting,making wind power generation schedule in power systems become an inevitable tendency.This paper proposes a new dispatch method for wind farm(WF)cluster by considering wind power forecasting errors.A probability distribution model of wind power forecasting errors and a mathematic expectation of the power shortage caused by forecasting errors are established.Then,the total mathematic expectation of power shortage from all WFs is minimized.Case study with respect to power dispatch in a WF cluster is conducted using forecasting and actual wind power data within 30 days from sites located at Gansu Province.Compared with the variable proportion method,the power shortage of the WF cluster caused by wind power forecasting errors is reduced.Along with the increment of wind power integrated into power systems,the method positively influences future wind power operation.
基金supported by the Joint Research Fund in Smart Grid (No.U1966601) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and State Grid Corporation of China。
文摘As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally described the uncertainty of wind power forecast errors(WPFEs) based on normal distribution or other standard distribution models, which only characterize the aleatory uncertainty. In fact, epistemic uncertainty in WPFE modeling due to limited data and knowledge should also be addressed. This paper proposes a multi-source information fusion method(MSIFM) to quantify WPFEs when considering both aleatory and epistemic uncertainties. An extended focal element(EFE) selection method based on the adequacy of historical data is developed to consider the characteristics of WPFEs. Two supplementary expert information sources are modeled to improve the accuracy in the case of insufficient historical data. An operation reliability evaluation technique is also developed considering the proposed WPFE model. Finally,a double-layer Monte Carlo simulation method is introduced to generate a time-series output of the wind power. The effectiveness and accuracy of the proposed MSIFM are demonstrated through simulation results.