To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base...To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.展开更多
To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power...To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.展开更多
It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex w...It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.展开更多
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw...Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.展开更多
Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the...Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.展开更多
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of...A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.展开更多
An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of succe...An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.展开更多
With abundant wind resources and high pressure imposed on en-vironmental protection, wind power development has a promising future. Butdue to intermittent nature, wind power can bring into full play only if being con-...With abundant wind resources and high pressure imposed on en-vironmental protection, wind power development has a promising future. Butdue to intermittent nature, wind power can bring into full play only if being con-nected into power grid to ensure its supply reliability and continuity, aswell as operational economy. However, technical and market barriers haveprevented wind power from integrating into power grid. To foster wind powerdevelopment, these barriers should be removed by both government incentivepolicies and sophisticated technologies.展开更多
文章对海上风电各国总体发展现状及未来发展趋势进行分析,表明各国都在加强对海上风电开发利用,但随着海上风电高速发展,有限的近海风电资源开发趋于饱和,深远海域风电成为海上风电未来发展的方向。然而水深离岸远,深远海风能开发困难,...文章对海上风电各国总体发展现状及未来发展趋势进行分析,表明各国都在加强对海上风电开发利用,但随着海上风电高速发展,有限的近海风电资源开发趋于饱和,深远海域风电成为海上风电未来发展的方向。然而水深离岸远,深远海风能开发困难,难于实现商业化。文章介绍了一种将新能源电力转换为其他能源载体的Power to X模式。氢作为1种可再生能源载体,可基于Power to X模式,通过将新能源电力电解水制氢的方式,有效降低深远海风电的成本。展开更多
Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considerin...Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.展开更多
This paper reviews the progress and trend of out-of-grid and in-grid type of wind power at home in the recent years and points out that the out-of-grid type of wind power has entered a steady development of industrial...This paper reviews the progress and trend of out-of-grid and in-grid type of wind power at home in the recent years and points out that the out-of-grid type of wind power has entered a steady development of industrialization now and large generating units are speeding the tempo of localization. This paper also enumerates the current major wind power farm projects and forecasts the development trend in the several years to come.展开更多
We consider the scheduling of battery charging of electric vehicles(EVs)integrated with renewable power generation.The increasing adoption of EVs and the development of renewable energies contribute importance to this...We consider the scheduling of battery charging of electric vehicles(EVs)integrated with renewable power generation.The increasing adoption of EVs and the development of renewable energies contribute importance to this research.The optimization of charging scheduling is challenging because of the large action space,the multi-stage decision making,and the high uncertainty.To solve this problem is time-consuming when the scale of the system is large.It is urgent to develop a practical and efficient method to properly schedule the charging of EVvs.The contribution of this work is threefold.First,we provide a sufficient condition on which the charging of EVs can be completely self-sustained by distributed generation.An algorithm is proposed to obtain the optimal charging policy when the sufficient condition holds.Second,the scenario when the supply of the renewable power generation is deficient is investigated.We prove that when the renewable generation is deterministic there exists an optimal policy which follows the modified least laxity and longer remaining processing time first(mLLLP)rule.Third,we provide an adaptive rule-based algorithm which obtains a near-optimal charging policy efficiently in general situations.We test the proposed algorithm by numerical experiments.The results show that it performs better than the other existing rule-based methods.展开更多
This study configures a simple wind tunnel using a blower for generating wind energy, which is equivalent to natural wind, and a test system that measures properties of power. Also, the mechanical and electrical power...This study configures a simple wind tunnel using a blower for generating wind energy, which is equivalent to natural wind, and a test system that measures properties of power. Also, the mechanical and electrical power in a small-scaled wind turbine are empirically measured to analyze the relationship between the mechanical and electrical power.展开更多
Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting ...Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting harmful gases to the envi-ronment that is separated in the air and water. Researchers have conducted re-searches to increase projects that will generate clean and renewable energy. Us-age of renewable energy via mankind is in continuous progress such as solar en-ergy, bioenergy, ocean energy and wind energy. Wind energy waste while the car moved was used to produce electric energy. In this paper, the usage of unused wind energy in vehicles was developed so that additional power for vehicles was enable via converting wind power into electric one. The wind turbine was assem-bled from a fan and transducer. Indoor test showed generation of different elec-tric voltages when varying the ambient temperature. The main experiment was carried out so that the wind turbine was installed above the car;values of volt-ages in various speeds of the car were recorded. When two fans were used with different specifications, the consequence was a direct proportionality that changes the happened between voltages and car’s speeds. A comparison between the two fans showed that: the fan with big blade dimensions was the best one to generate voltages. Finally, the high voltages were generated in low temperatures. These results reveal that we can avail from wind energy to supply vehicles with electricity as long as vehicles move along the way.展开更多
In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State ...In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.展开更多
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp...Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.展开更多
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
基金This study was supported by the National Key Research and Development Program of China(No.2018YFE0122200)National Natural Science Foundation of China(No.52077078)Fundamental Research Funds for the Central Universities(No.2020MS090).
文摘To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.
基金National Natural Science Foundation of China(No.61663019)
文摘To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ139)Climbing Peak Discipline Project of Shanghai Dianji University,China(No.15DFXK01)
文摘It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.
文摘Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.
文摘Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.
文摘A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.
基金supported by National Basic Research Program of China(973 Program)(2011CB209404)
文摘An improved method for calculating the corona power loss and the ground-level electric field on HVAC transmission lines induced by corona is proposed.Based on a charge simulation method combined with a method of successive images,the proposed method has the number and location of the simulated charges not arbitrary.When the surface electric field of a conductor exceeds the onset value,charges are emitted from corona into the space around,and the space ions and the surface charges on each sub-conductor are simulated by using the images of the other sub-conductors.The displacements of the space ions are calculated at every time step during corona periods in both the positive and the negative half cycles.Several examples are calculated by using the proposed method,and the calculated electric field at the ground level and the corona power loss agree well with previous measurements.The results show that simulating 12 charges in each conductor during 600 time steps in one cycle takes less time while guarantees the accuracy.The corona discharge from a 220 kV transmission line enhances slightly(less than 2%) the electric field at the ground level,but this effect is little from a 500 kV line.The improved method is a good compromise between the time cost and the accuracy of calculation.
文摘With abundant wind resources and high pressure imposed on en-vironmental protection, wind power development has a promising future. Butdue to intermittent nature, wind power can bring into full play only if being con-nected into power grid to ensure its supply reliability and continuity, aswell as operational economy. However, technical and market barriers haveprevented wind power from integrating into power grid. To foster wind powerdevelopment, these barriers should be removed by both government incentivepolicies and sophisticated technologies.
文摘文章对海上风电各国总体发展现状及未来发展趋势进行分析,表明各国都在加强对海上风电开发利用,但随着海上风电高速发展,有限的近海风电资源开发趋于饱和,深远海域风电成为海上风电未来发展的方向。然而水深离岸远,深远海风能开发困难,难于实现商业化。文章介绍了一种将新能源电力转换为其他能源载体的Power to X模式。氢作为1种可再生能源载体,可基于Power to X模式,通过将新能源电力电解水制氢的方式,有效降低深远海风电的成本。
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
文摘Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.
文摘This paper reviews the progress and trend of out-of-grid and in-grid type of wind power at home in the recent years and points out that the out-of-grid type of wind power has entered a steady development of industrialization now and large generating units are speeding the tempo of localization. This paper also enumerates the current major wind power farm projects and forecasts the development trend in the several years to come.
文摘We consider the scheduling of battery charging of electric vehicles(EVs)integrated with renewable power generation.The increasing adoption of EVs and the development of renewable energies contribute importance to this research.The optimization of charging scheduling is challenging because of the large action space,the multi-stage decision making,and the high uncertainty.To solve this problem is time-consuming when the scale of the system is large.It is urgent to develop a practical and efficient method to properly schedule the charging of EVvs.The contribution of this work is threefold.First,we provide a sufficient condition on which the charging of EVs can be completely self-sustained by distributed generation.An algorithm is proposed to obtain the optimal charging policy when the sufficient condition holds.Second,the scenario when the supply of the renewable power generation is deficient is investigated.We prove that when the renewable generation is deterministic there exists an optimal policy which follows the modified least laxity and longer remaining processing time first(mLLLP)rule.Third,we provide an adaptive rule-based algorithm which obtains a near-optimal charging policy efficiently in general situations.We test the proposed algorithm by numerical experiments.The results show that it performs better than the other existing rule-based methods.
文摘This study configures a simple wind tunnel using a blower for generating wind energy, which is equivalent to natural wind, and a test system that measures properties of power. Also, the mechanical and electrical power in a small-scaled wind turbine are empirically measured to analyze the relationship between the mechanical and electrical power.
文摘Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting harmful gases to the envi-ronment that is separated in the air and water. Researchers have conducted re-searches to increase projects that will generate clean and renewable energy. Us-age of renewable energy via mankind is in continuous progress such as solar en-ergy, bioenergy, ocean energy and wind energy. Wind energy waste while the car moved was used to produce electric energy. In this paper, the usage of unused wind energy in vehicles was developed so that additional power for vehicles was enable via converting wind power into electric one. The wind turbine was assem-bled from a fan and transducer. Indoor test showed generation of different elec-tric voltages when varying the ambient temperature. The main experiment was carried out so that the wind turbine was installed above the car;values of volt-ages in various speeds of the car were recorded. When two fans were used with different specifications, the consequence was a direct proportionality that changes the happened between voltages and car’s speeds. A comparison between the two fans showed that: the fan with big blade dimensions was the best one to generate voltages. Finally, the high voltages were generated in low temperatures. These results reveal that we can avail from wind energy to supply vehicles with electricity as long as vehicles move along the way.
文摘In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.
基金supported by China Three Gorges Corporation(Key technology research and demonstration application of large-scale source-net-load-storage integration under the vision of carbon neutrality)Fundamental Research Funds for the Central Universities(2020MS021).
文摘Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.