期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mixed Aleatory-epistemic Uncertainty Modeling of Wind Power Forecast Errors in Operation Reliability Evaluation of Power Systems 被引量:1
1
作者 Jinfeng Ding Kaigui Xie +4 位作者 Bo Hu Changzheng Shao Tao Niu Chunyan Li Congcong Pan 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1174-1183,共10页
As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally... As the share of wind power in power systems continues to increase, the limited predictability of wind power generation brings serious potential risks to power system reliability. Previous research works have generally described the uncertainty of wind power forecast errors(WPFEs) based on normal distribution or other standard distribution models, which only characterize the aleatory uncertainty. In fact, epistemic uncertainty in WPFE modeling due to limited data and knowledge should also be addressed. This paper proposes a multi-source information fusion method(MSIFM) to quantify WPFEs when considering both aleatory and epistemic uncertainties. An extended focal element(EFE) selection method based on the adequacy of historical data is developed to consider the characteristics of WPFEs. Two supplementary expert information sources are modeled to improve the accuracy in the case of insufficient historical data. An operation reliability evaluation technique is also developed considering the proposed WPFE model. Finally,a double-layer Monte Carlo simulation method is introduced to generate a time-series output of the wind power. The effectiveness and accuracy of the proposed MSIFM are demonstrated through simulation results. 展开更多
关键词 wind power forecast error(WPFE) epistemic uncertainty multi-source information fusion method(MSIFM) operation reliability extended focal element(EFE) double-layer Monte Carlo simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部