Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of...One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of this paper is to provide a summary study of the impact of related controls and operating strategies on the wind turbine which mean how parameters affect the wind turbine operation. The software of “GH bladed” produced by GL Garrad Hassan will be used to model wind turbine and to perform the analysis. Following two strategies, control of rotor speed and control of blade pitch angle, are applied to the model of the wind turbine to see how output power are adjusted and optimized. The final part proposes the operating strategy of the wind turbine to understand the running procedure of wind turbine inside.展开更多
This paper presents a modelling and parameter identification of through-hole type contactless slipring systems for transferring electrical power for wind turbine pitch control. An equivalent circuit model has been dev...This paper presents a modelling and parameter identification of through-hole type contactless slipring systems for transferring electrical power for wind turbine pitch control. An equivalent circuit model has been developed from the physical structure and dimensions of the contactless slipring using the duality rules, which is very different form traditional transformer. The circuit inductances are determined by the derived expressions from the system reluctances. In particular, the equivalent resistance representing the core loss of the slipring has been determined using phasor diagram of exciting current. FEM (Finite Element Method) models and practical prototypes are developed for testing and verifycations. Both simulation and experimental results have shown that the developed model gives truthful values for numerical calculations in order to obtain the equivalent electric circuit. The effect of fringing flux around the air gap on mutual inductance and the ways of correcting its effects are analysed. The obtained values have shown that the developed models and derived equations are with high accuracy as compared to the FEM simulation and experimental results.展开更多
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
文摘One specific issue associated with the wind turbine is how to manage and adjust the rotor speed and pitch angle in the turbine with the wind increasing to achieve the maximum power extraction from the wind. The aim of this paper is to provide a summary study of the impact of related controls and operating strategies on the wind turbine which mean how parameters affect the wind turbine operation. The software of “GH bladed” produced by GL Garrad Hassan will be used to model wind turbine and to perform the analysis. Following two strategies, control of rotor speed and control of blade pitch angle, are applied to the model of the wind turbine to see how output power are adjusted and optimized. The final part proposes the operating strategy of the wind turbine to understand the running procedure of wind turbine inside.
文摘This paper presents a modelling and parameter identification of through-hole type contactless slipring systems for transferring electrical power for wind turbine pitch control. An equivalent circuit model has been developed from the physical structure and dimensions of the contactless slipring using the duality rules, which is very different form traditional transformer. The circuit inductances are determined by the derived expressions from the system reluctances. In particular, the equivalent resistance representing the core loss of the slipring has been determined using phasor diagram of exciting current. FEM (Finite Element Method) models and practical prototypes are developed for testing and verifycations. Both simulation and experimental results have shown that the developed model gives truthful values for numerical calculations in order to obtain the equivalent electric circuit. The effect of fringing flux around the air gap on mutual inductance and the ways of correcting its effects are analysed. The obtained values have shown that the developed models and derived equations are with high accuracy as compared to the FEM simulation and experimental results.