期刊文献+
共找到2,404篇文章
< 1 2 121 >
每页显示 20 50 100
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
1
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 wind power coal-fired power PV multi-power generation system lithium-iron phosphate energy storage system
下载PDF
Three-Level Optimal Scheduling and Power Allocation Strategy for Power System ContainingWind-Storage Combined Unit
2
作者 Jingjing Bai Yunpeng Cheng +2 位作者 Shenyun Yao Fan Wu Cheng Chen 《Energy Engineering》 EI 2024年第11期3381-3400,共20页
To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ... To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis. 展开更多
关键词 wind power cluster energy storage system wind-storage combined unit optimal scheduling power allocation
下载PDF
Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation 被引量:10
3
作者 王皓怀 汤涌 +3 位作者 侯俊贤 刘楠 李碧辉 张宏宇 《中国电机工程学报》 EI CSCD 北大核心 2012年第1期I0001-I0026,共26页
针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选... 针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选取不同节点类型的方法,针对集电系统等值提出基于损耗不变原则的方法。等值模型和详细模型的算例结果表明,潮流计算等值方法具有较好的精度。在机电暂态仿真动态等值中,基于实际工程计算的最严重工况分析原则,提出运行在满出力点的单机“倍乘”等值模型,为工程计算中的风光储联合发电系统动态等值提供了一种解决方案。 展开更多
关键词 综合发电系统 暂态仿真 光伏发电 潮流计算 等效方法 电力系统 风能 功率
下载PDF
Review of the Analysis and Suppression for High-frequency Oscillations of the Grid-connected Wind Power Generation System
4
作者 Bo Pang Qi Si +4 位作者 Pan Jiang Kai Liao Xiaojuan Zhu Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期127-142,共16页
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is... High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping. 展开更多
关键词 Damping method High-frequency oscillation STABILITY wind power generation
下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems
5
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 wind power system entropy production system losses power quality indexes battery energy storage
下载PDF
Hydrodynamic Characteristics of New Floating Wind-Wave Energy Combined Power Generation Devices Under Typhoon-Wave-Current Coupling
6
作者 ZHAO Yongfa KE Shitang YUN Yiwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期82-89,共8页
The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a... The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%. 展开更多
关键词 extreme sea conditions wind and wave combined power generation wave nonlinearity
下载PDF
Power Stabilization by Windfarm Applied Statistical Model and Pumped Storage Generation Using Archimedean Screw
7
作者 Hiroya Mitsuyose Daichi Mizuse +1 位作者 Hiroatsu Fujiwara Akira Sugawara 《Journal of Mechanics Engineering and Automation》 2015年第12期681-686,共6页
In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted valu... In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted value of the windfarm. When the measured windfarm output is larger than the predicted value, the system is pumping up water with surplus power. When the windfarm output is smaller than the predicted value, the system is filling up lack power by hydro generator. Also, since hydro generator works with a start-up delay time, output shortage occurs at this time. To improve output shortage at the time, we estimate the time below the predicted value by a statistical model. As the result, the system succeeded in stabilizing the power and improving the start-up delay time of the hydro generator. 展开更多
关键词 windfarm pumped storage power generation Archimedean screw statistical model.
下载PDF
Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage 被引量:10
8
作者 Fangqian Wang Denghao Ouyang +3 位作者 Ziyuan Zhou Samuel JPage Dehua Liu Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期247-280,I0007,共35页
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid... Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage. 展开更多
关键词 Lignocellulosic biomass CELLULOSE LIGNIN power generation Energy storage Electrode materials
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
9
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 Battery energy storage power quality wind energy generating system.
下载PDF
Capacity Worth of Energy Storage System in Renewable Power Generation Plant
10
作者 Jinbin Li Yao Yao 《Engineering(科研)》 2013年第9期1-5,共5页
With the advance in renewable generation technologies, the cost of renewable energy becomes increasingly competitive when compared to fossil fuel-based generation resources. It is economically beneficial to integrate ... With the advance in renewable generation technologies, the cost of renewable energy becomes increasingly competitive when compared to fossil fuel-based generation resources. It is economically beneficial to integrate large amounts of renewable capacity in power systems. Unlike traditional generation facilities, however, using renewable resources for generation presents technical challenges in producing continuous power. In this report, an Energy Storage System (ESS) is integrated to smooth the variations in renewable power production and ensure the output power more controllable. Since it requires capital investment for the storage devices, it is important to obtain reasonable estimate of the storage capacities. This project is therefore formulated as an optimization problem in determining the two dominating factors of the capital cost for the ESS: the power capacity and the energy capacity. The objective is to make the renewable power more reliable and simultaneously maximize the economic benefits that can be obtained from the scheme. To make the results more convincing, analyses in this report start with wind generation, for wind has greater variability and unpredictability than other renewable sources. Selection of ESS type is narrowed down to battery energy storage system (BESS) in the scheme. However, the methods presented here are suitable for any type of energy storage methods and are also useful for intermittent renewable energy resources other than wind. 展开更多
关键词 wind power ENERGY storage System power Capacity ENERGY Capacity
下载PDF
Assessment of Operational Performance in a Power Generation/Selling Integrated Company Using a Dynamic Proportional Adjustment Coefficient
11
作者 Jingbin Wu Hongming Yang Sheng Xiang 《Energy Engineering》 EI 2024年第11期3263-3287,共25页
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ... Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient. 展开更多
关键词 power generation/selling integrated company dynamic proportional adjustment coefficient combined weighting extension theory assessment of operational performance
下载PDF
Wind power operation capacity credit assessment considering energy storage 被引量:8
12
作者 Wenhui Shi Jixian Qu Weisheng Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期1-8,共8页
Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of ene... Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of energy storage devices on wind power operational capacity credit.The definition of wind power operational capacity credit is given.The available capacity model of different generators and the charging and discharging model of the energy storage are established.Based on the above model,the evaluation method of wind power operation credible capacity considering energy storage devices is proposed.The influence of energy storage on the wind power operation credible capacity is obtained by case study,which is of great help for the power system dispatching operation and wind power accommodation. 展开更多
关键词 wind power Operation capacity credit Energy storage Operation reliability
下载PDF
Wind Power Flow Optimization and Control System Based on Rapid Energy Storage 被引量:23
13
作者 ZHAO Yanlei LI Haidong +1 位作者 ZHANG Lei ZHANG Housheng 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0004-I0004,187,共1页
风电功率的间歇与波动致使电场容量可信度低、可调度性差;同时易引起局部电网的电压不稳、频率波动,影响了系统的电能质量及稳定性。针对此现象,将超级电容器与蓄电池组成快速储能装置,用于风电的潮流优化控制。采用三重双向直流变... 风电功率的间歇与波动致使电场容量可信度低、可调度性差;同时易引起局部电网的电压不稳、频率波动,影响了系统的电能质量及稳定性。针对此现象,将超级电容器与蓄电池组成快速储能装置,用于风电的潮流优化控制。采用三重双向直流变换电路控制储能元件间的功率流动;采用四象限交直流变换电路控制储能与电网间的能量交换。提出基于超级电容器电压低频波动抑制的功率分配方法,可显著减少蓄电池的充放次数;提出基于储能元件荷电状态的储能能量调整规则,可避免储能元件的过充和频繁深度放电,以优化其功率调节能力。实验结果表明,系统可实现2种储能元件的优势互补,能有效平滑调节风电注入电网的有功功率,并实时补偿控制风电接入点的无功功率。 展开更多
关键词 风力发电厂 控制系统 流程优化 储能 基础 电力系统 电能质量 低容量
下载PDF
Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage 被引量:35
14
作者 WANG Haiying BAI Xiaomin XU Jing 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0003-I0003,186,共1页
风光储联合发电系统并网后必须采取策略与系统之间实现协调调度与运行才可在保证可靠性的前提下最大化利用可再生能源,但现有的可靠性评估中还缺少对大规模风光储联合发电系统协调运行的考虑。针对此问题,基于序贯蒙特卡罗仿真方法,... 风光储联合发电系统并网后必须采取策略与系统之间实现协调调度与运行才可在保证可靠性的前提下最大化利用可再生能源,但现有的可靠性评估中还缺少对大规模风光储联合发电系统协调运行的考虑。针对此问题,基于序贯蒙特卡罗仿真方法,建立了风电、光伏和储能系统的发电可靠性评估模型,并提出了新的协调调度策略。模型综合考虑了风速、太阳光辐照度、环境温度以及2种新能源发电技术的能量变换特性和储能系统的充放电约束等因素。这些模型被应用到IEEERTS79中,通过在Matlab中编制程序进行仿真计算,考察不同的协调运行策略、联合发电系统容量配置以及储能特性对于系统裕度的影响。评估结果可为联合发电系统并网规划与设计提供参考。 展开更多
关键词 太阳能光伏发电 可靠性评估 风力发电 能源储存 蒙特卡罗方法 混合发电系统 经营风险 能源存储
下载PDF
Difference between grid connections of large-scale wind power and conventional synchronous generation 被引量:7
15
作者 Jie Li Chao Liu +2 位作者 Pengfei Zhang Yafeng Wang Jun Rong 《Global Energy Interconnection》 2020年第5期486-493,共8页
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel... In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms. 展开更多
关键词 Large-scale wind power generation Conventional synchronous generators Grid connection scheme power control
下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
16
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 wind power Monthly generation forecast Climate model LSTM neural network
下载PDF
An Optimal Dynamic Generation Scheduling for a Wind-Thermal Power System 被引量:4
17
作者 Xingyu Li Dongmei Zhao 《Energy and Power Engineering》 2013年第4期1016-1021,共6页
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ... In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm. 展开更多
关键词 generation SCHEDULING DYNAMIC OPTIMIZATION wind power PARTICLE SWARM OPTIMIZATION
下载PDF
Important Issues and Results When Considering the Stochastic Representation of Wind Power Plants in a Generation Optimization Model: An Application to the Large Brazilian Interconnected Power System 被引量:3
18
作者 Juliana F. Chade Mummey Ildo L. Sauer +1 位作者 Dorel S. Ramos William W.-G. Yeh 《Energy and Power Engineering》 2019年第8期320-332,共13页
Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wi... Wind power has an increasing share of the Brazilian energy market and may represent 11.6% of total capacity by 2024. For large hydro-thermal systems having high-storage capacity, a complementarity between hydro and wind production could have important effects. The current optimization models are applied to dispatch power plants to meet the market demand and optimize the generation dispatches considering only hydroelectric and thermal power plants. The remaining sources, including wind power, small-hydroelectric plants and biomass plants, are excluded from the optimization model and are included deterministically. This work introduces a general methodology to represent the stochastic behavior of wind production aimed at the planning and operation of large interconnected power systems. In fact, considering the generation of the wind power source stochastically could show the complementarity between the hydro and wind power production, reducing the energy price in the spot market with the reduction of thermal power dispatches. In addition to that, with a reduction in wind power and a simultaneous dry-season occurrence, this model, is able to show the need of thermal power plants dispatches as well as the reduction of the risk of energy shortages. 展开更多
关键词 STOCHASTIC Optimization HYDROTHERMAL Systems Planning wind power Complementarity SYNTHETIC Series generation
下载PDF
Dynamic and Power Generation Features of A Wind-Wave Hybrid System Consisting of A Spar-Type Wind Turbine and An Annular Wave Energy Converter in Irregular Waves 被引量:1
19
作者 ZHOU Bin-zhen ZHENG Zhi +3 位作者 HONG Miao-wen JIN Peng WANG Lei CHEN Fan-ting 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期923-933,共11页
Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generati... Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind. 展开更多
关键词 wind energy wave energy hybrid system MOTION power generation
下载PDF
Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control 被引量:1
20
作者 董海鹰 孙传华 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期173-177,共5页
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ... For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved. 展开更多
关键词 wind power generation power control PID adaptive oontroi neural network
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部