Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical para...Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals;the turbulent dissipation rate ε and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) ε in the precipitation area ranged from 10^(-3.5) to 10^(-1) m^(2) s^(-3) and was positively correlated with the falling velocity spectrum width;(2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of ε being weak or strong varied with rainfall attributes;(3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event;(4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.展开更多
Through the analysis of the target characteristics and according to the intermittent clutter bursting and short duration characteristics,a new method for the clutter recognition based on the fractional Fourier transf...Through the analysis of the target characteristics and according to the intermittent clutter bursting and short duration characteristics,a new method for the clutter recognition based on the fractional Fourier transform(FRFT)is proposed.This method is predicated on the fact that the FRFT perfectly localizes a chirp signal as an impulse when the angle parameter of the transform matches the chirp rate of the chirp signal.The method involves detecting the presence of the intermittent clutter and correctly estimating its orientation in the time-frequency plane,removing the intermittent clutter in the fractional domain,and completing wind estimation by the power spectrum.By testing the artificial WPR-like signal and data measured from the field,we verify that the FRFT-based method is very effective.展开更多
To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection expe...To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.展开更多
Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is ...Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.展开更多
[ Objective] The research aimed to contrast physical quantity diagnosis and wind profile radar data of two heavy rainfalls. [ Method ] From circulation background, physical quantity field and wind profile radar data, ...[ Objective] The research aimed to contrast physical quantity diagnosis and wind profile radar data of two heavy rainfalls. [ Method ] From circulation background, physical quantity field and wind profile radar data, we analyzed two big rainstorm weather processes (8 -9 July and August 10) in Lianyungang City in 2012. [ Result] Rainstorm generation was related to favorable large-scale circulation situation. The first-stage precipitation during 8 -9 July was warm-zone precipitation, and the precipitation at the second stage was triggered by shear line. Precipitation on August 10 was generated by typhoon low-pressure inverted trough and cold air. Sufficient water vapor content and strong water vapor transportation were favorable for generation of the heavy precipitation. Suction effect by divergence at high layer and convergence at middle and low layers was favorable for maintenance of the strong ascending motion. Occurrence of the heavy precipitation must have ascending motion condition. But it was not that the stronger the ascending motion, the stronger the rainfall intensity. Kindex and θse500 -θse 850 were closely related to rainstorm occurrence. Horizontal wind data of the wind profile radar provided fine structure of the atmospheric horizontal motion at vertical direction, could clearly display vertical structure of the wind field in rainstorm process, and directly reflected change characteristics of the wind field in precipitation process. [ Conclusion] The research could provide reference for future forecast work.展开更多
This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retriev...This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).展开更多
Unlike previous studies on wind turbulence spectrum in the planetary boundary layer, this investigation focuses on high-altitude (1-5 km) wind energy spectrum and turbulence spectrum under various weather conditions...Unlike previous studies on wind turbulence spectrum in the planetary boundary layer, this investigation focuses on high-altitude (1-5 km) wind energy spectrum and turbulence spectrum under various weather conditions. A fast Fourier transform (FFT) is used to calculate the wind energy and turbulence spectrum density at high altitudes (1-5 km) based on wind profiling radar (WPR) measurements. The turbulence spectrum under stable weather conditions at high altitudes is expressed in powers within a frequency range of 2 × 10-5-10-3 s-1, and the slope b is between -0.82 and -1.04, indicating that the turbulence is in the transition from the energetic area to the inertial sub-range. The features of strong weather are reflected less obviously in the wind energy spectrum than in the turbulence spectrum, with peaks showing up at different heights in the latter spectrum. Cold windy weather appears over a period of 1.5 days in the turbulence spectrum. Wide-range rainstorms exhibit two or three peaks in the spectrum over a period of 15-20 h, while in severe convective weather conditions, there are two peaks at 13 and 9 h. The results indicate that spectrum analysis of wind profiling radar measurements can be used as a supplemental and helpful method for weather analysis.展开更多
Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeas...Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeastern edge of Tibetan Plateau(TP), it is found that the strengths of turbulent kinetic energy(TKE), buoyancy term and shear term depend on vegetation cover in association with local stability and thermodynamic condition. Strong kinetic turbulence appears when near surface layer in neutral condition with the large contribution from shear term. In an unstable condition within near surface layer, the atmospheric turbulent motion is mainly thermal turbulence, as buoyancy term is obviously larger than shear term. Under a stable condition the intermittent turbulence is accompanied by weak shear and buoyancy term, and TKE is significantly less than neutral or instable condition. The study also presents that the buoyancy term contribution at Nyingchi station in the southern slopes of the TP large topography in spring is significantly larger than that at Dali over the southeastern TP edge, reflecting that the thermal turbulence makes an important contribution to convection activity in the southern slopes of TP. Dali station is located in complex terrain with mountain and valley leading to larger kinetic turbulence. From the perspective of interaction of turbulence-convection in different scales, the study revealed that the height of convective boundary layer(CBL) could reach up to 1500–2000 m. TKE, shear term, and buoyancy term in near surface layer have the notable correlations with BL height and local vertical motion. The daytime thermodynamic turbulence effect of heat flux and buoyancy term has an obvious impact on the height of CBL, whereas mechanical turbulence only exerts a less impact. Mechanical turbulence in near surface layer has a significant impact on vertical motion especially in the forenoon with impacting height of 2500–3000 m. The peaks in diurnal variations of shear term and buoyancy term correspond to the high instable periods, especially in summer forenoon. Our observation analysis characterized the convection activity triggered by TKE source and their interaction in the southeastern TP edge.展开更多
Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment...Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment from Sep. to Dec. 2008 in Shouxian, Anhui, China. Results showed that during daytime or nighttime, regardless of cloud conditions, the GPS sounding was the most accurate method for measuring BLH. Unfortunately, because of the long time gap between launchings, sounding data did not capture the diurnal evolution of the BLH. Thus, wind profile radar emerged as a promising instrument for direct and continuous measurement of the mixing height during the daytime, accurately determining BLH using the structure parameter of the electromagnetic refractive index. However, during nighttime, radar was limited by weak signal extraction and did not work well for determining the BLH of the stable boundary layer, often recording the BLH of the residual layer. While micro-pulse lidar recorded the evolution of BLH, it overestimated the BLH of the stable boundary layer. This method also failed to work under cloudy conditions because of the influence of water vapor. Future work needs to develop a method to determine BLH that combines the complimentary features of all three algorithms.展开更多
基金National Key R&D Program of China(2018YFC1506102)。
文摘Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals;the turbulent dissipation rate ε and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) ε in the precipitation area ranged from 10^(-3.5) to 10^(-1) m^(2) s^(-3) and was positively correlated with the falling velocity spectrum width;(2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of ε being weak or strong varied with rainfall attributes;(3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event;(4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.
基金Sponsored by the National Natural Science Foundation of China(60772065)
文摘Through the analysis of the target characteristics and according to the intermittent clutter bursting and short duration characteristics,a new method for the clutter recognition based on the fractional Fourier transform(FRFT)is proposed.This method is predicated on the fact that the FRFT perfectly localizes a chirp signal as an impulse when the angle parameter of the transform matches the chirp rate of the chirp signal.The method involves detecting the presence of the intermittent clutter and correctly estimating its orientation in the time-frequency plane,removing the intermittent clutter in the fractional domain,and completing wind estimation by the power spectrum.By testing the artificial WPR-like signal and data measured from the field,we verify that the FRFT-based method is very effective.
基金co-funded by the National Basic Research Program of China(2010CB951001)the Research Subject with the Support of National Science and Technology(2012BA C23B01)the Central Scientific Research and Operational Project(IDM201002)
文摘To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.
基金National Natural Science Foundation of China(41475029)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306004)Meteorological Key Technology Integration and Application of the China Meteorological Administration(CMAGJ2013M74)
文摘Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.
基金Supported by Social Development Fund Project of the Science and Technology Bureau in Lianyungang City,China ( SH1207)
文摘[ Objective] The research aimed to contrast physical quantity diagnosis and wind profile radar data of two heavy rainfalls. [ Method ] From circulation background, physical quantity field and wind profile radar data, we analyzed two big rainstorm weather processes (8 -9 July and August 10) in Lianyungang City in 2012. [ Result] Rainstorm generation was related to favorable large-scale circulation situation. The first-stage precipitation during 8 -9 July was warm-zone precipitation, and the precipitation at the second stage was triggered by shear line. Precipitation on August 10 was generated by typhoon low-pressure inverted trough and cold air. Sufficient water vapor content and strong water vapor transportation were favorable for generation of the heavy precipitation. Suction effect by divergence at high layer and convergence at middle and low layers was favorable for maintenance of the strong ascending motion. Occurrence of the heavy precipitation must have ascending motion condition. But it was not that the stronger the ascending motion, the stronger the rainfall intensity. Kindex and θse500 -θse 850 were closely related to rainstorm occurrence. Horizontal wind data of the wind profile radar provided fine structure of the atmospheric horizontal motion at vertical direction, could clearly display vertical structure of the wind field in rainstorm process, and directly reflected change characteristics of the wind field in precipitation process. [ Conclusion] The research could provide reference for future forecast work.
基金Supported by the National Natural Science Foundation of China(41075023)China Meteorological Administration Special Public Welfare Research Fund(GYHY200906039 and GYHY201206042)State Key Laboratory of Severe Weather ResearchFund
文摘This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).
基金Supported by the National Natural Science Foundation of China(41075023 and 41475029)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306004)Key Technology Integration and Application Fund of the China Meteorological Administration(CMAGJ2013M74)
文摘Unlike previous studies on wind turbulence spectrum in the planetary boundary layer, this investigation focuses on high-altitude (1-5 km) wind energy spectrum and turbulence spectrum under various weather conditions. A fast Fourier transform (FFT) is used to calculate the wind energy and turbulence spectrum density at high altitudes (1-5 km) based on wind profiling radar (WPR) measurements. The turbulence spectrum under stable weather conditions at high altitudes is expressed in powers within a frequency range of 2 × 10-5-10-3 s-1, and the slope b is between -0.82 and -1.04, indicating that the turbulence is in the transition from the energetic area to the inertial sub-range. The features of strong weather are reflected less obviously in the wind energy spectrum than in the turbulence spectrum, with peaks showing up at different heights in the latter spectrum. Cold windy weather appears over a period of 1.5 days in the turbulence spectrum. Wide-range rainstorms exhibit two or three peaks in the spectrum over a period of 15-20 h, while in severe convective weather conditions, there are two peaks at 13 and 9 h. The results indicate that spectrum analysis of wind profiling radar measurements can be used as a supplemental and helpful method for weather analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.41130960,41165001,41175010)the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406001)
文摘Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeastern edge of Tibetan Plateau(TP), it is found that the strengths of turbulent kinetic energy(TKE), buoyancy term and shear term depend on vegetation cover in association with local stability and thermodynamic condition. Strong kinetic turbulence appears when near surface layer in neutral condition with the large contribution from shear term. In an unstable condition within near surface layer, the atmospheric turbulent motion is mainly thermal turbulence, as buoyancy term is obviously larger than shear term. Under a stable condition the intermittent turbulence is accompanied by weak shear and buoyancy term, and TKE is significantly less than neutral or instable condition. The study also presents that the buoyancy term contribution at Nyingchi station in the southern slopes of the TP large topography in spring is significantly larger than that at Dali over the southeastern TP edge, reflecting that the thermal turbulence makes an important contribution to convection activity in the southern slopes of TP. Dali station is located in complex terrain with mountain and valley leading to larger kinetic turbulence. From the perspective of interaction of turbulence-convection in different scales, the study revealed that the height of convective boundary layer(CBL) could reach up to 1500–2000 m. TKE, shear term, and buoyancy term in near surface layer have the notable correlations with BL height and local vertical motion. The daytime thermodynamic turbulence effect of heat flux and buoyancy term has an obvious impact on the height of CBL, whereas mechanical turbulence only exerts a less impact. Mechanical turbulence in near surface layer has a significant impact on vertical motion especially in the forenoon with impacting height of 2500–3000 m. The peaks in diurnal variations of shear term and buoyancy term correspond to the high instable periods, especially in summer forenoon. Our observation analysis characterized the convection activity triggered by TKE source and their interaction in the southeastern TP edge.
文摘Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment from Sep. to Dec. 2008 in Shouxian, Anhui, China. Results showed that during daytime or nighttime, regardless of cloud conditions, the GPS sounding was the most accurate method for measuring BLH. Unfortunately, because of the long time gap between launchings, sounding data did not capture the diurnal evolution of the BLH. Thus, wind profile radar emerged as a promising instrument for direct and continuous measurement of the mixing height during the daytime, accurately determining BLH using the structure parameter of the electromagnetic refractive index. However, during nighttime, radar was limited by weak signal extraction and did not work well for determining the BLH of the stable boundary layer, often recording the BLH of the residual layer. While micro-pulse lidar recorded the evolution of BLH, it overestimated the BLH of the stable boundary layer. This method also failed to work under cloudy conditions because of the influence of water vapor. Future work needs to develop a method to determine BLH that combines the complimentary features of all three algorithms.