Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural n...In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural networks(ANNs)in system management.For optimal sizing of an HRES,the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed,offering a well-balanced strategy for system sizing.This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location,avoiding the pitfalls of over-and under-sizing,and thereby enhancing the operational efficiency.Furthermore,the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs.It elaborates on the design,modeling,and control strategies for the HRES components by utilizing Matlab/Simulink for implementation.The findings demonstrate the proficiency of the ANN-based power manager in determining the operational modes guided by a specifically designed flowchart.By integrating ANN-driven energy management strategies into an HRES,the proposed approach marks a significant advancement in system adaptability,precision control,and efficiency,thereby maximizing the effective utilization of renewable resources.展开更多
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi...This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.展开更多
In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regi...In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources.展开更多
The Sultanate of Oman has been dealing with a severe renewable energy issue for the past few decades,and the government has struggled to find a solution.In addition,Oman’s strategy for converting power generation to ...The Sultanate of Oman has been dealing with a severe renewable energy issue for the past few decades,and the government has struggled to find a solution.In addition,Oman’s strategy for converting power generation to sources of renewable energy includes a goal of 60 percent of national energy demands being met by renewables by 2040,including solar and wind turbines.Furthermore,the use of small-scale energy from wind devices has been on the rise in recent years.This upward trend is attributed to advancements in wind turbine technology,which have lowered the cost of energy from wind.To calculate the internal and external factors that affect the small-scale energy of wind technologies,the study used a fuzzy analytical hierarchy process technique for order of preference by similarity to an ideal solution.As a result,in the decision model,four criteria,seventeen sub-criteria,and three resources of renewable energy were calculated as options from the viewpoint of the Sultanate of Oman.This research is based on an examination of statistics on energy produced by wind turbines at various locations in the Sultanate of Oman.Further,six distinct miniature wind turbines were investigated for four different locations.The outcomes of this study indicate that the tiny wind turbine has a lot of potential in the Sultanate of Oman for applications such as homes,schools,college campuses,irrigation,greenhouses,communities,and small businesses.The government should also use renewable energy resources to help with the renewable energy issue and make sure that the country has enough renewable energy for its long-term growth.展开更多
This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for ...This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for later electricity generation with assistance from a rotary vane machine. The configuration and operational policy is explained, and a comparative case study shows that the proposed system recovers investment costs through savings on electricity procurement and revenue through power export.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turb...In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turbine, the mechanic and the electric parts. Simulations have been conducted with Matlab/Simulink to validate the model and the proposed control schemes.展开更多
In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate...In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate solutions of wind turbine system.The proportional-derivative controller was applied for reducing the oscillations of the controlled system.Adding the controller to single degree of freedom system equation is responsible for energy transfers in offshore wind turbine tower system.The steady state solution of stability at worst resonance cases is studied and examined.The offshore wind turbine system behavior was studied numerically at its different parameters values.Furthermore,the response and numerical results were obtained and discussed.The stability is also analyzed using technique of phase plane and equations of frequency response.In addition,the numerical results and comparison between analytical and numerical solutions were obtained with MAPLE and MATLAB algorithms.展开更多
The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard sta...The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue.展开更多
In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoret...In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.展开更多
This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbin...This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.展开更多
The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplif...The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.展开更多
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
文摘In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural networks(ANNs)in system management.For optimal sizing of an HRES,the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed,offering a well-balanced strategy for system sizing.This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location,avoiding the pitfalls of over-and under-sizing,and thereby enhancing the operational efficiency.Furthermore,the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs.It elaborates on the design,modeling,and control strategies for the HRES components by utilizing Matlab/Simulink for implementation.The findings demonstrate the proficiency of the ANN-based power manager in determining the operational modes guided by a specifically designed flowchart.By integrating ANN-driven energy management strategies into an HRES,the proposed approach marks a significant advancement in system adaptability,precision control,and efficiency,thereby maximizing the effective utilization of renewable resources.
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.
基金supported by the Natural Science Foundation of China(Grant No.52076079)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.
文摘In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources.
文摘The Sultanate of Oman has been dealing with a severe renewable energy issue for the past few decades,and the government has struggled to find a solution.In addition,Oman’s strategy for converting power generation to sources of renewable energy includes a goal of 60 percent of national energy demands being met by renewables by 2040,including solar and wind turbines.Furthermore,the use of small-scale energy from wind devices has been on the rise in recent years.This upward trend is attributed to advancements in wind turbine technology,which have lowered the cost of energy from wind.To calculate the internal and external factors that affect the small-scale energy of wind technologies,the study used a fuzzy analytical hierarchy process technique for order of preference by similarity to an ideal solution.As a result,in the decision model,four criteria,seventeen sub-criteria,and three resources of renewable energy were calculated as options from the viewpoint of the Sultanate of Oman.This research is based on an examination of statistics on energy produced by wind turbines at various locations in the Sultanate of Oman.Further,six distinct miniature wind turbines were investigated for four different locations.The outcomes of this study indicate that the tiny wind turbine has a lot of potential in the Sultanate of Oman for applications such as homes,schools,college campuses,irrigation,greenhouses,communities,and small businesses.The government should also use renewable energy resources to help with the renewable energy issue and make sure that the country has enough renewable energy for its long-term growth.
文摘This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for later electricity generation with assistance from a rotary vane machine. The configuration and operational policy is explained, and a comparative case study shows that the proposed system recovers investment costs through savings on electricity procurement and revenue through power export.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
文摘In this paper, a model of a variable speed wind turbine using a permanent magnet synchronous generator (PMSG) is presented and the control schemes are proposed. The model presents the aerodynamic part of the wind turbine, the mechanic and the electric parts. Simulations have been conducted with Matlab/Simulink to validate the model and the proposed control schemes.
基金This work was supported by Taif University under research grant 1-439-6067.The authors would like to acknowledge the scientific support provided by the university.
文摘In this paper,we studied the vibration performance,energy transfer and stability of the offshore wind turbine tower system under mixed excitations.The method of multiple scales is utilized to calculate the approximate solutions of wind turbine system.The proportional-derivative controller was applied for reducing the oscillations of the controlled system.Adding the controller to single degree of freedom system equation is responsible for energy transfers in offshore wind turbine tower system.The steady state solution of stability at worst resonance cases is studied and examined.The offshore wind turbine system behavior was studied numerically at its different parameters values.Furthermore,the response and numerical results were obtained and discussed.The stability is also analyzed using technique of phase plane and equations of frequency response.In addition,the numerical results and comparison between analytical and numerical solutions were obtained with MAPLE and MATLAB algorithms.
文摘The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue.
文摘In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.
文摘This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.
基金National Renewable Energy Laboratory(NREL)under Grant No.DE-AC36-08GO28308
文摘The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.