In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated...In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field ...To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator.The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field.By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor,the temperature field is solved,and the global temperature distribution of the generator,considering the influence of end windings,is obtained.By changing the air gap length,permanent magnet thickness,and winding conductivity,the relationship between the loss,temperature rise,and exergy efficiency can be obtained.By optimizing the air gap length,permanent magnet thickness,and winding conductivity,the best configuration and material properties can improve the efficiency of the motor by up to 4%.展开更多
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed...Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.展开更多
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a con...The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.展开更多
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only lo...This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system.展开更多
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I...The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes.展开更多
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the hi...In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.展开更多
Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic comp...Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.展开更多
To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and v...To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and validated.The multi-column low CG platform is designed to support a 6MW wind turbine class and operated at a water depth of 50m in the South China Sea.The frequency domain software WADAM and time domain software NREL-FAST are used to simulate coupled dynamic responses of the floating wind turbine system with second-order wave loads considering.The dynamic behaviors of multi-column low CG FOWT system under normal operation and parked conditions are presented.The influence of second-order wave force on the motion responses of the multi-column platform,fore-aft force and moment of the tower base and mooring force are researched respectively.The results demonstrate that the coupled dynamic responses at rated operating condition and extreme condition meet the normal operating requirements and extreme survival requirements of FOWT system in the shallow water(50m)of South China Sea.In addition,it is found that,the wave frequency response gradually replaces the second-order low frequency response as the main influencing factor of the coupled dynamic response of the FOWT system with the increasing severity of the sea states.However,in general,the magnitude of second-order low frequency response increases with the increasing severity of the design load case.Thus,in the subsequent design of the shallow water FOWT system,the second-order effects should be paid enough attention.展开更多
The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplif...The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.展开更多
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of t...The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum(BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundationmooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.展开更多
When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the found...When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the foundation and structure of the wind turbine.In this paper,the structural load of a 4 MW offshore wind turbine was analyzed during a collision with an operations and maintenance ship.The variations in the wind speeds on hub height,waves,and the sea currents were measured.The dynamic simulation of the wind turbine was carried out using the test data as the input parameters.As a result,the load condition of the turbine without a collision was obtained.Finally,the measured turbine load was compared with the simulation results.This study shows that the collision of the operation and the maintenance ship increases the bending moments at the tower’s bottom and the blade’s roots.展开更多
Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depth...Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depths(50-200 m).The performance of SFOWTs can be improved through a judicious choice of configuration,pretension,and mooring line layout.Four SFOWTs with different configurations and a similar mass,named Cyl-4,Cub-4,Cyl-3,and Hex-3,were designed and analyzed.The responses of the four SFOWTs were predicted under operational condition and extreme condition.The results show that the four SFOWTs exhibited good performance under both conditions.The effect of platform configurations on power output was negligible under the operational condition.Under the extreme condition,among the four SFOWTs,the mean bending moments at the tower base were very close,while the maximum values differed by up to 21.5%,due to the configurations.The effect of wind-wave misalignment under the extreme condition was further analyzed.In general,the motion performances of the four-pontoon SFOWTs,Cyl-4 and Cub-4,were superior to those of the three-pontoon SFOWTs,Cyl-3 and Hex-3.Optimization studies of the mooring system were carried out on Cub-4 with different mooring line pretensions and four mooring layouts.The optimized Cub-4 could reduce the maximum motion responses in the surge,heave,and yaw by 97.7%,91.5%,and 98.7%,respectively.展开更多
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.Th...An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.展开更多
The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in dee...The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in deep water.Hydrodynamic performance of multi-column tension-leg-type floating wind turbine is investigated numerically,particularly at its motion responses.Based on the Navier-Stokes equations and the volume of fluid method,a numerical wave tank(NWT)is established to simulate the floating structure system.The analytical relaxation method is adopted to generate regular waves.Dynamic mesh method is used to calculate the motion of the floating body.Hydrostatic decay of motion and hydrodynamic forces in the regular wave are provided.The computation results agree with the experimental data available.Numerical results show that the wave force on the lower pontoon of the system is the greatest while that on the center column is the smallest.Detailed information about the changes of the wave forces on different elements of the floating system is discussed.展开更多
This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation ...This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LHZ21E090003)the National Nature Science Foundation of China(Grant No.52171279)+1 种基金Zhoushan Science&Technology Project(Grant No.2021C21002)supported by CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico,Grant No.301474/2017-6).
文摘In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金supported by the National Natural Science Foundation of China(Nos.51966013,52066013)the Special Fund of Inner Mongolia Education Department(No.STZC202230).
文摘To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator.The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field.By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor,the temperature field is solved,and the global temperature distribution of the generator,considering the influence of end windings,is obtained.By changing the air gap length,permanent magnet thickness,and winding conductivity,the relationship between the loss,temperature rise,and exergy efficiency can be obtained.By optimizing the air gap length,permanent magnet thickness,and winding conductivity,the best configuration and material properties can improve the efficiency of the motor by up to 4%.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
文摘The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system.
基金National Natural Science Foundation of China under Grant Nos.52001052 and 51939002。
文摘The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes.
基金financially supported by the Ministry of Industry and Information Technology of China(Grant No.[2016]546)
文摘In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.
基金Project supported by the National Natural Science Foundation of China (Grant No.52131102).
文摘Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.
基金support from the National Natural Science Foundation of China (No.51809170 and No.12102210)State Key Laboratory of Ocean Engi-neering (No.GKZD010081)Programfor International Coopera-tion of Shanghai Science and Technology (No.18160744000).
文摘To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and validated.The multi-column low CG platform is designed to support a 6MW wind turbine class and operated at a water depth of 50m in the South China Sea.The frequency domain software WADAM and time domain software NREL-FAST are used to simulate coupled dynamic responses of the floating wind turbine system with second-order wave loads considering.The dynamic behaviors of multi-column low CG FOWT system under normal operation and parked conditions are presented.The influence of second-order wave force on the motion responses of the multi-column platform,fore-aft force and moment of the tower base and mooring force are researched respectively.The results demonstrate that the coupled dynamic responses at rated operating condition and extreme condition meet the normal operating requirements and extreme survival requirements of FOWT system in the shallow water(50m)of South China Sea.In addition,it is found that,the wave frequency response gradually replaces the second-order low frequency response as the main influencing factor of the coupled dynamic response of the FOWT system with the increasing severity of the sea states.However,in general,the magnitude of second-order low frequency response increases with the increasing severity of the design load case.Thus,in the subsequent design of the shallow water FOWT system,the second-order effects should be paid enough attention.
基金National Renewable Energy Laboratory(NREL)under Grant No.DE-AC36-08GO28308
文摘The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.
基金financially supported by the National Basic Research Program of China(973 ProgramGrant Nos.2014CB046801 and 2014CB046805)
文摘The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum(BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundationmooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.
基金supported by the National Key Research and Development Program of China(2018YFB0904005)。
文摘When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the foundation and structure of the wind turbine.In this paper,the structural load of a 4 MW offshore wind turbine was analyzed during a collision with an operations and maintenance ship.The variations in the wind speeds on hub height,waves,and the sea currents were measured.The dynamic simulation of the wind turbine was carried out using the test data as the input parameters.As a result,the load condition of the turbine without a collision was obtained.Finally,the measured turbine load was compared with the simulation results.This study shows that the collision of the operation and the maintenance ship increases the bending moments at the tower’s bottom and the blade’s roots.
基金The authors gratefully acknowledge the financial support from the Tianjin Municipal Natural Science Foundation(No.18JCYBJC22800).
文摘Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depths(50-200 m).The performance of SFOWTs can be improved through a judicious choice of configuration,pretension,and mooring line layout.Four SFOWTs with different configurations and a similar mass,named Cyl-4,Cub-4,Cyl-3,and Hex-3,were designed and analyzed.The responses of the four SFOWTs were predicted under operational condition and extreme condition.The results show that the four SFOWTs exhibited good performance under both conditions.The effect of platform configurations on power output was negligible under the operational condition.Under the extreme condition,among the four SFOWTs,the mean bending moments at the tower base were very close,while the maximum values differed by up to 21.5%,due to the configurations.The effect of wind-wave misalignment under the extreme condition was further analyzed.In general,the motion performances of the four-pontoon SFOWTs,Cyl-4 and Cub-4,were superior to those of the three-pontoon SFOWTs,Cyl-3 and Hex-3.Optimization studies of the mooring system were carried out on Cub-4 with different mooring line pretensions and four mooring layouts.The optimized Cub-4 could reduce the maximum motion responses in the surge,heave,and yaw by 97.7%,91.5%,and 98.7%,respectively.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.
基金supported by the National Basic Research Program of China(″973″Program)(No.2014CB-046200)the National Natural Science Foundation of China(No.11572196)
文摘The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in deep water.Hydrodynamic performance of multi-column tension-leg-type floating wind turbine is investigated numerically,particularly at its motion responses.Based on the Navier-Stokes equations and the volume of fluid method,a numerical wave tank(NWT)is established to simulate the floating structure system.The analytical relaxation method is adopted to generate regular waves.Dynamic mesh method is used to calculate the motion of the floating body.Hydrostatic decay of motion and hydrodynamic forces in the regular wave are provided.The computation results agree with the experimental data available.Numerical results show that the wave force on the lower pontoon of the system is the greatest while that on the center column is the smallest.Detailed information about the changes of the wave forces on different elements of the floating system is discussed.
文摘This paper describes a small wind turbine generation system with SynRG (synchronous reluctance generator). SynRGs are robust and inexpensive. In addition, SynRG has no cogging torque. Hence, wind turbine generation system with SynRG can achieve smooth start at low wind velocity. The rotor design of proposed SynRG is multi flux barrier type. With FEA (finite element analysis) software, the characteristics of SynRG are brought out, and the performance of wind turbine generation system with SynRG including copper loss and iron loss is simulated by FEA coupled with the motion equation of the wind turbine generation system under the maximum power point tracking control. In this paper, the constant wind test and the quasi-natural wind test are conducted. In conclusion, the results of these simulations indicate that the wind turbine generation system with SynRG has good performance, especially in starting phenomena.