To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti...To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.展开更多
The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(fr...The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(frost ice and clear ice)were examined by combining the FENSAP-ICE and FLUENT analysis tools.The ice type on the blade surfaces was predicted by using a multi-time step method.Accordingly,the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated.The results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice.Clear ice has a greater impact on aerodynamics compared to frost ice,while frost ice is significantly influenced by the roughness of its icy surface.展开更多
This paper aims to design an optimized blade for Horizontal Axis Wind Turbine(HWAT).Since airfoil is a basic component of blade design,an optimized airfoil(referred as SJX)was proposed based on the line theory through...This paper aims to design an optimized blade for Horizontal Axis Wind Turbine(HWAT).Since airfoil is a basic component of blade design,an optimized airfoil(referred as SJX)was proposed based on the line theory through the weight analogy to pressure distribution of air flow.Its lift,drag,lift⁃to⁃drag ratio were compared with those NACA2409⁃34,NACA2410,and RK40 airfoils by using Profili software at fixed wind velocity and under different angles of attack.The NACA2409⁃34 airfoil was found to be greatly similar with the SJX airfoil.Based on the Wilson method,blades using SJX and NACA2490⁃34 airfoils were developed and different performance parameters such as velocity distribution,pressure distribution,and power were compared under variable wind velocities and different angles of attack ranging from-4°to 6°at different radius from the center of rotor using computational fluid dynamics(CFD)in ANSYS FLUENT.Results of the study suggested that the performance of the SJX based airfoil and blade was much more optimized.展开更多
Icing on blade surface of the straight-bladed vertical axis wind turbine(SB-VAWT)set in cold regions is a serious problem.To study the performance effects of icing on SB-VAWT,numerical simulations were carried out on ...Icing on blade surface of the straight-bladed vertical axis wind turbine(SB-VAWT)set in cold regions is a serious problem.To study the performance effects of icing on SB-VAWT,numerical simulations were carried out on the ice accretion on NACA 0015 airfoil which was always used for blade airfoil of SB-VAWT by CFD methods based on 2D steady incompressible N-S Equation.The morphology and procedure of icing on blade airfoil were obtained under different wind speeds,attack angles of blade and water flow flux in wind.The static flow fields,especially the static pressure fields around blade airfoil with or without icing on it were computed.The aerodynamic characteristics including the lift and drag force coefficients of blade airfoil were also calculated.The results indicated that icing caused the static pressure field changed greatly and led to the increasing of drag force and reducing the aerodynamic performance.展开更多
This paper presents the analysis of dynamic characteristics of horizontal axis wind turbine blade, where the mode coupling among axial extension, flap vibration (out-of-plane bend- ing), lead/lag vibration (in-plan...This paper presents the analysis of dynamic characteristics of horizontal axis wind turbine blade, where the mode coupling among axial extension, flap vibration (out-of-plane bend- ing), lead/lag vibration (in-plane bending) and torsion is emphasized. By using the Bernoulli-Euler beam to describe the slender blade which is mounted on rigid hub and subjected to unsteady aero- dynamic force, the governing equation and characteristic equation of the coupled vibration of the blade are obtained. Due to the combined influences of mode coupling, centrifugal effect, and the non-uniform distribution of mass and stiffness, the explicit solution of characteristic equation is impossible to obtain. An equivalent transformation based on Green's functions is taken for the characteristic equation, and then a system of integrodifferential equations is derived. The nu- merical difference methods are adopted to solve the integrodifferential equations to get natural frequencies and mode shapes. The influences of mode coupling, centrifugal effect, and rotational speed on natural frequencies and mode shapes are analyzed. Results show that: (1) the influence of bending-torsion coupling on natural frequency is tiny; (2) rotation has dramatic influence on bending frequency but little influence on torsion frequency; (3) the influence of bending-bending coupling on dynamic characteristics is notable at high rotational speed; (4) the effect of rotational speed on bending mode is tiny.展开更多
A new way of connecting blade to rotor shaft named offset blade method was proposed for straightbladed vertical axis wind turbine(SB-VAWT) in this study. In order to invest the efficiency of this method and effects of...A new way of connecting blade to rotor shaft named offset blade method was proposed for straightbladed vertical axis wind turbine(SB-VAWT) in this study. In order to invest the efficiency of this method and effects of main parameters including offset length and blade airfoil on improving the output power performance and static starting characteristics, numerical simulations and wind tunnel tests were carried out. Four kinds of blade airfoil including NACA0012, NACA0018, NACA0024 and S809 were selected to analyze the influence of blade thickness and symmetry on SB-VAWT with offset blade. Numerical simulations were firstly carried out on output power for the rotor with 6 kinds of offset length for each airfoil. Wind tunnel tests were also carried out to compare with the results of simulations. The flow fields of rotor with different offset lengths were simulated and the effects of offset blade were analyzed. The optimum offset length among all studied for output power performance was found. Furthermore, the static starting torque and aerodynamic force characteristics of the rotor with optimum offset length were researched. According to the results, appropriate offset length can improve the output power characteristics and smooth the fluctuations of the static torque during one rotational period. The best offset length varies with the airfoil.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
基金supported by the National Natural Science Foundation Projects(Grant Number 51966018)the Chongqing Natural Science Foundation of China(Grant Number cstc2020jcyjmsxmX0314)+2 种基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003)Ningxia Key Research and Development Program of Foreign Science and Technology Cooperation Projects(202204)the Key Scientific Research Project in Higher Education Institution from the Ningxia Education Department(2022115).
文摘To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(frost ice and clear ice)were examined by combining the FENSAP-ICE and FLUENT analysis tools.The ice type on the blade surfaces was predicted by using a multi-time step method.Accordingly,the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated.The results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice.Clear ice has a greater impact on aerodynamics compared to frost ice,while frost ice is significantly influenced by the roughness of its icy surface.
文摘This paper aims to design an optimized blade for Horizontal Axis Wind Turbine(HWAT).Since airfoil is a basic component of blade design,an optimized airfoil(referred as SJX)was proposed based on the line theory through the weight analogy to pressure distribution of air flow.Its lift,drag,lift⁃to⁃drag ratio were compared with those NACA2409⁃34,NACA2410,and RK40 airfoils by using Profili software at fixed wind velocity and under different angles of attack.The NACA2409⁃34 airfoil was found to be greatly similar with the SJX airfoil.Based on the Wilson method,blades using SJX and NACA2490⁃34 airfoils were developed and different performance parameters such as velocity distribution,pressure distribution,and power were compared under variable wind velocities and different angles of attack ranging from-4°to 6°at different radius from the center of rotor using computational fluid dynamics(CFD)in ANSYS FLUENT.Results of the study suggested that the performance of the SJX based airfoil and blade was much more optimized.
基金This study was sponsored by Scientific Research Fund of Heilongjiang Provincial Education Department(No.:1153h01)National Natural Science Foundation of China(No.:10702015)+1 种基金Natural Science Foundation of Heilongjiang Province of China(LC2009C36)supported by Northeast Agricultural University Scientific Research foundation started from 2008.
文摘Icing on blade surface of the straight-bladed vertical axis wind turbine(SB-VAWT)set in cold regions is a serious problem.To study the performance effects of icing on SB-VAWT,numerical simulations were carried out on the ice accretion on NACA 0015 airfoil which was always used for blade airfoil of SB-VAWT by CFD methods based on 2D steady incompressible N-S Equation.The morphology and procedure of icing on blade airfoil were obtained under different wind speeds,attack angles of blade and water flow flux in wind.The static flow fields,especially the static pressure fields around blade airfoil with or without icing on it were computed.The aerodynamic characteristics including the lift and drag force coefficients of blade airfoil were also calculated.The results indicated that icing caused the static pressure field changed greatly and led to the increasing of drag force and reducing the aerodynamic performance.
基金supported by the National Natural Science Foundation of China(Nos.11372257 and 11601007)Sichuan Provincial Project for Young Research Group of Scientific and Technological Innovations(2013)+1 种基金the Anhui Provincial Natural Science Foundation(No.1708085QA17)Pre-research Project Funds of Anhui University of Science and Technology(No.2016yz007)
文摘This paper presents the analysis of dynamic characteristics of horizontal axis wind turbine blade, where the mode coupling among axial extension, flap vibration (out-of-plane bend- ing), lead/lag vibration (in-plane bending) and torsion is emphasized. By using the Bernoulli-Euler beam to describe the slender blade which is mounted on rigid hub and subjected to unsteady aero- dynamic force, the governing equation and characteristic equation of the coupled vibration of the blade are obtained. Due to the combined influences of mode coupling, centrifugal effect, and the non-uniform distribution of mass and stiffness, the explicit solution of characteristic equation is impossible to obtain. An equivalent transformation based on Green's functions is taken for the characteristic equation, and then a system of integrodifferential equations is derived. The nu- merical difference methods are adopted to solve the integrodifferential equations to get natural frequencies and mode shapes. The influences of mode coupling, centrifugal effect, and rotational speed on natural frequencies and mode shapes are analyzed. Results show that: (1) the influence of bending-torsion coupling on natural frequency is tiny; (2) rotation has dramatic influence on bending frequency but little influence on torsion frequency; (3) the influence of bending-bending coupling on dynamic characteristics is notable at high rotational speed; (4) the effect of rotational speed on bending mode is tiny.
基金sponsored by the Project 51576037 supported by National Natural Science Foundation of China (NSFC)Project 12541012 supported by Science and Technology Research Project of Heilongjiang Provincial Department of Education
文摘A new way of connecting blade to rotor shaft named offset blade method was proposed for straightbladed vertical axis wind turbine(SB-VAWT) in this study. In order to invest the efficiency of this method and effects of main parameters including offset length and blade airfoil on improving the output power performance and static starting characteristics, numerical simulations and wind tunnel tests were carried out. Four kinds of blade airfoil including NACA0012, NACA0018, NACA0024 and S809 were selected to analyze the influence of blade thickness and symmetry on SB-VAWT with offset blade. Numerical simulations were firstly carried out on output power for the rotor with 6 kinds of offset length for each airfoil. Wind tunnel tests were also carried out to compare with the results of simulations. The flow fields of rotor with different offset lengths were simulated and the effects of offset blade were analyzed. The optimum offset length among all studied for output power performance was found. Furthermore, the static starting torque and aerodynamic force characteristics of the rotor with optimum offset length were researched. According to the results, appropriate offset length can improve the output power characteristics and smooth the fluctuations of the static torque during one rotational period. The best offset length varies with the airfoil.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.