The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c...The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,p...Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,particularly over the magnetic equator,have been a subject of study for several decades.However,despite the known importance of neutral winds,a comprehensive understanding and characterization of the winds is still lacking.Various ground-based and satellite missions have provided valuable information on the contribution of neutral winds to the global atmospheric dynamics.However,efforts in the global monitoring of neutral winds are still lacking,and the drivers behind the behavior of TNWs as well as their influence on the TIS remain incomplete.To address these knowledge gaps in the global circulation of TNWs,it is crucial to develop a deep understanding of the neutral wind characteristics over different regions.The low-latitude equatorial region in particular has been observed to exert complex influences on TNWs because of the unique effects of the Earth’s magnetic field at the dip equator.Studying neutral winds over this region will provide valuable insights into the unique dynamics and processes that occur in this region,thereby enhancing our understanding of their role in the overall dynamics of the TIS.Additionally,through empirical observations,an improved ability to accurately model and predict the behavior of this region can be achieved.This review article addresses challenges in understanding equatorial winds by reviewing historical measurements,current missions,and the interactions of ionospheric and thermospheric phenomena,emphasizing the need for comprehensive measurements to improve global atmospheric dynamics and weather forecasting.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se...The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.展开更多
The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "con...The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "contact all along" assumption based on which wheels and lower structure are always contact was abandoned. The alterable element used in this method is a conceptional element, which is used to calculate the coupling interaction of upper and lower structures and has some typical characteristics: firstly it flows along with the moving of contact point; secondly whether it is used for calculation depends on the contact state; thirdly its sizes could change according to specific problems and so on. VISUAL FORTRAN program was coded, and different moving vehicle models were presented taking into consideration the effects of random corrugation in the numerical study. The numerical solutions are favored comparing with the results obtained by alternative methods when there is no jump phenomenon existed. With abrupt irregularity, the transient jump of wheel was studied using the present method.展开更多
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to dev...To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to develop vehicle models as well as traffic congestion load models. Furthermore, the idling vehicle-bridge coupling model was established by the finite element method and the congestion models were applied to calculate dynamic impact factors. Compared with the value specified in Chinese codes, the calculated values were 1.15-2.67 times as large as the latter, which indicates the impact factors caused by idling vehicle-bridge coupling under congestion situations were much larger than those in normal traffic conditions. As a result, a calibration factor of 1.7 was recommended for bridge design or evaluation when considering vehicle-bridge coupling vibration under heavy traffic congestion. The proposed analytical model, analysis method, and results could also be beneficial references to further investigation in this field.展开更多
To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite ...To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established.Then,the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language.This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle.The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program.Then,three reinforcement schemes for the bridge(Addition of longitudinal beams,Reinforcement of bridge decks,and Replacement of suspenders)were proposed and numerically simulated,and the vibration reduction effects of the three schemes were evaluated based on the numerical results to find effective ones.It is confirmed that the reinforcement scheme of Addition of longitudinal beams shows the most significant vibration reduction effect.It is recommended in the engineering practice that the combination of the reinforcement schemes of Addition of longitudinal beams and Replacement of bridge deck can be used to solve the excessive vibration problem.展开更多
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w...By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.展开更多
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie...Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ...Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.展开更多
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition...As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.展开更多
The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in t...The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.展开更多
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species ...The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
基金Sponsored by the Key Project of the National Natural Science Foundation of China (Grant No.90715039)
文摘The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory(Grant No.220100011).
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
基金the Ministry of Higher Education(KPT)Malaysia for the MyBrainSc program.Idahwati Sarudin was supported by Universiti Sains Malaysia through a Short-Term Grant(Project No.304/PFIZIK/6315730)Nurul Shazana Abdul Hamid received funding from Universiti Kebangsaan Malaysia for funding this work through a University Research Grant(Grant No.GUP-2023-048)。
文摘Thermospheric neutral winds(TNWs)refer to the neutral gases in the thermosphere circulating as tides,which play a crucial role in the dynamics of the thermosphere-ionosphere system(TIS).Global geospace neutral winds,particularly over the magnetic equator,have been a subject of study for several decades.However,despite the known importance of neutral winds,a comprehensive understanding and characterization of the winds is still lacking.Various ground-based and satellite missions have provided valuable information on the contribution of neutral winds to the global atmospheric dynamics.However,efforts in the global monitoring of neutral winds are still lacking,and the drivers behind the behavior of TNWs as well as their influence on the TIS remain incomplete.To address these knowledge gaps in the global circulation of TNWs,it is crucial to develop a deep understanding of the neutral wind characteristics over different regions.The low-latitude equatorial region in particular has been observed to exert complex influences on TNWs because of the unique effects of the Earth’s magnetic field at the dip equator.Studying neutral winds over this region will provide valuable insights into the unique dynamics and processes that occur in this region,thereby enhancing our understanding of their role in the overall dynamics of the TIS.Additionally,through empirical observations,an improved ability to accurately model and predict the behavior of this region can be achieved.This review article addresses challenges in understanding equatorial winds by reviewing historical measurements,current missions,and the interactions of ionospheric and thermospheric phenomena,emphasizing the need for comprehensive measurements to improve global atmospheric dynamics and weather forecasting.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
基金National Natural Science Foundation of China under Grant NNSF-50508036New Century Excellent Talents in University of China Under Grant NCET-06-0802Outstanding Young Academic Leaders Program of Sichuan Province Under Grant 2009-15-406
文摘The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.
基金the Science and Technology Commissionof Shanghai Municipality (No. 03DZ12017)the Shang-hai Municipal Informatization Commission
文摘The so called "alterable-element method" (AEM) was introduced to deal with the coupling interac-tion of vehicle and sub-structure considering the actual transient jump of wheel, while the classical "contact all along" assumption based on which wheels and lower structure are always contact was abandoned. The alterable element used in this method is a conceptional element, which is used to calculate the coupling interaction of upper and lower structures and has some typical characteristics: firstly it flows along with the moving of contact point; secondly whether it is used for calculation depends on the contact state; thirdly its sizes could change according to specific problems and so on. VISUAL FORTRAN program was coded, and different moving vehicle models were presented taking into consideration the effects of random corrugation in the numerical study. The numerical solutions are favored comparing with the results obtained by alternative methods when there is no jump phenomenon existed. With abrupt irregularity, the transient jump of wheel was studied using the present method.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51708069)the Natural Science Foundation of Chongqing(Grant No.cstcstc2018jcyjA2535)。
文摘To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to develop vehicle models as well as traffic congestion load models. Furthermore, the idling vehicle-bridge coupling model was established by the finite element method and the congestion models were applied to calculate dynamic impact factors. Compared with the value specified in Chinese codes, the calculated values were 1.15-2.67 times as large as the latter, which indicates the impact factors caused by idling vehicle-bridge coupling under congestion situations were much larger than those in normal traffic conditions. As a result, a calibration factor of 1.7 was recommended for bridge design or evaluation when considering vehicle-bridge coupling vibration under heavy traffic congestion. The proposed analytical model, analysis method, and results could also be beneficial references to further investigation in this field.
基金This work is supported by the Natural Science Foundation Projects of Liaoning Province(2019-ZD-0145).
文摘To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established.Then,the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language.This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle.The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program.Then,three reinforcement schemes for the bridge(Addition of longitudinal beams,Reinforcement of bridge decks,and Replacement of suspenders)were proposed and numerically simulated,and the vibration reduction effects of the three schemes were evaluated based on the numerical results to find effective ones.It is confirmed that the reinforcement scheme of Addition of longitudinal beams shows the most significant vibration reduction effect.It is recommended in the engineering practice that the combination of the reinforcement schemes of Addition of longitudinal beams and Replacement of bridge deck can be used to solve the excessive vibration problem.
文摘By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.
文摘Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+2 种基金the National Natural Science Foundation of China(No.12302301)the China Postdoctoral Science Foundation(No.2023M742229)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
文摘Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.
基金financially supported by the National Key R&D Program of China (2022YFC3700400&2022YFB3901700)。
文摘As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.
基金the National Key Research and Development Program of China(2020YFA0608403)the National Natural Science Foundation of China(42171083)the Natural Science Foundation of Gansu Province,China(23JRRA601).
文摘The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.
基金supported by the Key R&D Program of Ningxia Hui Autonomous Region,China(2021BEG03008)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2021AAC03083).
文摘The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.