The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the charac...The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the characteristics in both the inertial subrange and the large eddies range,is presented in this paper.The method of least squares is adopted to obtain the parameters in the model.Then the differences between the FFT spectrum and the HHT spectrum are compared.It is indicated that the values of the HHT spectrum in the energy containing range are slightly larger than those of the FFT spectrum while the values of the HHT spectrum in both inertial subrange and dissipation subrange are very close to that of Fourier spectrum.It is concluded that the HHT spectrum describes elaborately and accurately the spectrum values in the low frequencies and the fitted wind velocity model provides a reference for reconstructing the near-ground wind field of Beijing city in wind tunnel test and for numerical simulation.展开更多
This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retriev...This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 90815021, 51021140005, 50978025, 50938008)
文摘The wind velocity spectra at Beijing Meteorological Tower are calculated using Hilbert-Huang transform and Fourier transform,respectively.A innovative model of wind velocity spectrum,which is accordant with the characteristics in both the inertial subrange and the large eddies range,is presented in this paper.The method of least squares is adopted to obtain the parameters in the model.Then the differences between the FFT spectrum and the HHT spectrum are compared.It is indicated that the values of the HHT spectrum in the energy containing range are slightly larger than those of the FFT spectrum while the values of the HHT spectrum in both inertial subrange and dissipation subrange are very close to that of Fourier spectrum.It is concluded that the HHT spectrum describes elaborately and accurately the spectrum values in the low frequencies and the fitted wind velocity model provides a reference for reconstructing the near-ground wind field of Beijing city in wind tunnel test and for numerical simulation.
基金Supported by the National Natural Science Foundation of China(41075023)China Meteorological Administration Special Public Welfare Research Fund(GYHY200906039 and GYHY201206042)State Key Laboratory of Severe Weather ResearchFund
文摘This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).