The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a...The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.展开更多
The fully developed túrbulent flows over wavy boundaries are investigated by means of the k-ε model.Predicted flow characteristics over rigid wavy walls are in good agreement with the availa- ble experimental da...The fully developed túrbulent flows over wavy boundaries are investigated by means of the k-ε model.Predicted flow characteristics over rigid wavy walls are in good agreement with the availa- ble experimental data.Moreover drag reduction has been found in a 2-dimensional channel with periodi- cal wavy walls.The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface.Better agreement has been obtained in the prediction of the growth rates of wind waves as compared with the previous theoretical and numerical results.展开更多
基金jointly funded by the National Key Research and Development Projects(No.2017YFE0132000)the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456)the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
文摘The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.
基金The project supported by the National Natural Science Foundation of China.
文摘The fully developed túrbulent flows over wavy boundaries are investigated by means of the k-ε model.Predicted flow characteristics over rigid wavy walls are in good agreement with the availa- ble experimental data.Moreover drag reduction has been found in a 2-dimensional channel with periodi- cal wavy walls.The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface.Better agreement has been obtained in the prediction of the growth rates of wind waves as compared with the previous theoretical and numerical results.