The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p...The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about...A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about 1 um), the rate of the oil content increase in the water column could be approximated from the difference between the dispersion rate (R) of the oil slick and the coagulation rate (R’) of the dispersed oil slick. Assuming the coagulation rate is directly proportional to the concentration of the water dispersed oil slick (i. e. R’ =KC),, the integral form of the dynamic model can be expressed as C=R*[1-exp(-K*t)]/K and parameters R and K can be regressed with a computer. The relative deviation of model results from the experimental data was mainly less than 10%. The oil slick dispersion rate (R) had exponential relationship with the wind velocity (V), and can be fitted with a formula R=A*(U+1)B.The fitted constant of the coagulation rate, K(0.8-3.0* 10-3 min-1) did not have significant展开更多
A third generation wave model was developed to simulate wind waves in the South China Sea near Hong Kong. The model solves the energy conservation equation of the two dimensional wave spectrum by directly computing th...A third generation wave model was developed to simulate wind waves in the South China Sea near Hong Kong. The model solves the energy conservation equation of the two dimensional wave spectrum by directly computing the nonlinear energy interaction among waves of different frequencies, thus avoiding the imposition of restrictions on the shape of the predicted spectra. The use of an upwind difference scheme in the advective terms produces an artificial diffusion which partly compensates the dispersive effect due to the phase velocity differences among various wave components. The use of a semi-implicit scheme for the source terms together with a special treatment of the high frequency tail of the spectrum allows a large time integration step. Verification of the model was done for wave hindcasting studies under conditions of two typhoons and two cold fronts in the north part of the South China Sea near Hong Kong . The model results agree well with the field measurements except that the presence of a展开更多
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoo...Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.展开更多
The spectral form of wind waves is investigated based on the ocean wave data observed at three nearshore stations of Taiwan. In this study, the generalized forms of Pierson-Moskowitz spectrum and JONSWAP spectrum are ...The spectral form of wind waves is investigated based on the ocean wave data observed at three nearshore stations of Taiwan. In this study, the generalized forms of Pierson-Moskowitz spectrum and JONSWAP spectrum are used to describe the local wave spectrum by selecting suitable spectral form parameters. It is shown that, at a specific site, the similarity of wave spectral form exists. Thus it is possible to use a representative spectral form for a given nearshore region to describe the wave spectrum at this nearshore. On the other hand, the effects of relative water depth on spectral form are examined. The feasibility of two spectral models in finite water depth is evaluated by using the same field wave data.展开更多
The presented method for numerical typhoon wave prediction is composed of a scheme for real time pressure forecasts, a marine wind numerical model and a typhoon wave numerical model. In the Northwest Pacific Ocean and...The presented method for numerical typhoon wave prediction is composed of a scheme for real time pressure forecasts, a marine wind numerical model and a typhoon wave numerical model. In the Northwest Pacific Ocean and China seas where water depth is over 20 m, a hybrid wave model [Wen Shengchang, Zhang Dacuo, Chen Bobal and Guo Peifang. 1989, Acta Oceanologica Sinica, 8 (1), 1~14; Zhang Dacuo, Wu Zengmao,Jiang Decai, Wang Wei, Chen Bobai, Tat Weitao, Wen Shengchang, Xu Qichun and Guo Peifaug. 1992, Acta Oceanologica Sinica, 11 (2), 157~178] is employed with 1°×1°grids, while in the South China Sea and East China Sea where typhoon frequently appears, the WAM model (WAMDI Group. 1988, Journal of Physical Oceanography, 18, 1755~1810) of shallow water version is embedded with (1 /4 )°×(1 /4)°grids. The boundary condition at the open boundary of the WAM model is provided by the hybrid model. After 3 a of testing forecasts(Yang Chuncheng, Dai Mingrui and Zhang Dacuo. 1992, International Symposium on Tropical Cyclone Disasters, October 12~16, Beijing, 404~409 ) and improvement, this system was put into operational use on the forecasting computer network of National Marine Environment Forecast Center of China in June, 1993. The wave predictions of 22 typhoon events show that the system is stable and prompt, and the forecast results are satisfactory. This system provides reliable numerical products for the disaster-prevention forecasts. The product is broadcasted in CCTV News at every noon.展开更多
Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004...Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.展开更多
文摘The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
文摘A dynamic experiment for oil dispersion into a water column was performed with a 21 m long, 0.5 m wide, and 1 m high wind-driven wave tank. At wind velocity between 6-12 m/s and with the oil slide kept constant (about 1 um), the rate of the oil content increase in the water column could be approximated from the difference between the dispersion rate (R) of the oil slick and the coagulation rate (R’) of the dispersed oil slick. Assuming the coagulation rate is directly proportional to the concentration of the water dispersed oil slick (i. e. R’ =KC),, the integral form of the dynamic model can be expressed as C=R*[1-exp(-K*t)]/K and parameters R and K can be regressed with a computer. The relative deviation of model results from the experimental data was mainly less than 10%. The oil slick dispersion rate (R) had exponential relationship with the wind velocity (V), and can be fitted with a formula R=A*(U+1)B.The fitted constant of the coagulation rate, K(0.8-3.0* 10-3 min-1) did not have significant
基金the National Natural Science Foundation of China and a grant from the Hong Kong Polytechnic
文摘A third generation wave model was developed to simulate wind waves in the South China Sea near Hong Kong. The model solves the energy conservation equation of the two dimensional wave spectrum by directly computing the nonlinear energy interaction among waves of different frequencies, thus avoiding the imposition of restrictions on the shape of the predicted spectra. The use of an upwind difference scheme in the advective terms produces an artificial diffusion which partly compensates the dispersive effect due to the phase velocity differences among various wave components. The use of a semi-implicit scheme for the source terms together with a special treatment of the high frequency tail of the spectrum allows a large time integration step. Verification of the model was done for wave hindcasting studies under conditions of two typhoons and two cold fronts in the north part of the South China Sea near Hong Kong . The model results agree well with the field measurements except that the presence of a
基金This project is supported bythe Canadian Panel on Energy Research and Development (Offshore Environmental Fac-tors Program) , ONR (US Office of Naval Research) via GoMOOS-the Gulf of Maine Ocean Observing System,Petroleum Research Atlantic Canada (PRAC) ,and the CFCAS (Canada Foundation for Climate and AtmosphericStudies) ,Canadian Panel on Energy Research and Development (Offshore Environmental Factors Program) .It is al-so supported bythe Advanced Doctoral Fund of the Ministry of Education of China (Grant No.20030294010)
文摘Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.
文摘The spectral form of wind waves is investigated based on the ocean wave data observed at three nearshore stations of Taiwan. In this study, the generalized forms of Pierson-Moskowitz spectrum and JONSWAP spectrum are used to describe the local wave spectrum by selecting suitable spectral form parameters. It is shown that, at a specific site, the similarity of wave spectral form exists. Thus it is possible to use a representative spectral form for a given nearshore region to describe the wave spectrum at this nearshore. On the other hand, the effects of relative water depth on spectral form are examined. The feasibility of two spectral models in finite water depth is evaluated by using the same field wave data.
文摘The presented method for numerical typhoon wave prediction is composed of a scheme for real time pressure forecasts, a marine wind numerical model and a typhoon wave numerical model. In the Northwest Pacific Ocean and China seas where water depth is over 20 m, a hybrid wave model [Wen Shengchang, Zhang Dacuo, Chen Bobal and Guo Peifang. 1989, Acta Oceanologica Sinica, 8 (1), 1~14; Zhang Dacuo, Wu Zengmao,Jiang Decai, Wang Wei, Chen Bobai, Tat Weitao, Wen Shengchang, Xu Qichun and Guo Peifaug. 1992, Acta Oceanologica Sinica, 11 (2), 157~178] is employed with 1°×1°grids, while in the South China Sea and East China Sea where typhoon frequently appears, the WAM model (WAMDI Group. 1988, Journal of Physical Oceanography, 18, 1755~1810) of shallow water version is embedded with (1 /4 )°×(1 /4)°grids. The boundary condition at the open boundary of the WAM model is provided by the hybrid model. After 3 a of testing forecasts(Yang Chuncheng, Dai Mingrui and Zhang Dacuo. 1992, International Symposium on Tropical Cyclone Disasters, October 12~16, Beijing, 404~409 ) and improvement, this system was put into operational use on the forecasting computer network of National Marine Environment Forecast Center of China in June, 1993. The wave predictions of 22 typhoon events show that the system is stable and prompt, and the forecast results are satisfactory. This system provides reliable numerical products for the disaster-prevention forecasts. The product is broadcasted in CCTV News at every noon.
基金The Agency for Defense Development under contract Nos 609-83-01532,UD000008BD and UD970022ADKorea Institute of Science and Technology Evaluation and Planning under contract No.2000-N-NL-01-C-012+3 种基金the Korean Ministry of Environments under contract No.121-041-033Korean Ministry of Education under the BK21 ProgramKorea Research Foundation under the Free-doctoral scholars programKorean Ministry of Oceans and Fisheries under the projects"Development of Korea Operational Oceanographic System(KOOS)"and"Development of Technology for CO2Marine Geological Storage"
文摘Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.