The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so...The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.展开更多
The electrical and mechanical characteristics of the wire-to-plate surface dielectric barrier discharge and the induced ionic wind are investigated experimentally.The different temporal behaviors in positive and negat...The electrical and mechanical characteristics of the wire-to-plate surface dielectric barrier discharge and the induced ionic wind are investigated experimentally.The different temporal behaviors in positive and negative half-cycles are studied by time-resolved images.It is shown that the discharge and the light emission are generally stronger in the positive half cycle.The discharge is inhomogeneous and propagates in streamer mode;however,in the negative half-cycle,the discharge appears visually uniformly and operates in the diffuse mode.The surface discharge can produce ionic wind about several m/s above the dielectric surface.There exists an optimal width of the grounded electrode to produce a larger plasma area or active wind region.Increasing of the applied voltage or normalized dielectric constant leads to a larger wind velocity.The performance of ionic wind on flow control is visualized by employing a smoke stream.展开更多
基金This work was supported by the National Nature Science Foundation of China(NSFC)under Project 51607079.
文摘The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.
基金supported by National Natural Science Foundation of China(Nos.11175017 and 11475019)
文摘The electrical and mechanical characteristics of the wire-to-plate surface dielectric barrier discharge and the induced ionic wind are investigated experimentally.The different temporal behaviors in positive and negative half-cycles are studied by time-resolved images.It is shown that the discharge and the light emission are generally stronger in the positive half cycle.The discharge is inhomogeneous and propagates in streamer mode;however,in the negative half-cycle,the discharge appears visually uniformly and operates in the diffuse mode.The surface discharge can produce ionic wind about several m/s above the dielectric surface.There exists an optimal width of the grounded electrode to produce a larger plasma area or active wind region.Increasing of the applied voltage or normalized dielectric constant leads to a larger wind velocity.The performance of ionic wind on flow control is visualized by employing a smoke stream.