Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi...This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.展开更多
Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renew...Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated.展开更多
Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particl...Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.展开更多
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati...The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.展开更多
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th...The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II.展开更多
Most of electricity power in China comes from coal and hydropower. Already, China must import nearly half of its oil. Concerns about power capacity shortages and air pollution are all adding urgency and pressure to sw...Most of electricity power in China comes from coal and hydropower. Already, China must import nearly half of its oil. Concerns about power capacity shortages and air pollution are all adding urgency and pressure to switch to alternative technologies and renewable energy. Among renewable energy sources, wind power and solar photovoltaic power are playing key roles in China, and are the fastest-growing power generation technologies. So this paper focuses on them and analyzes the corresponding technical properties of them. First of all, wind power transforms the kinetic energy from the wind into electricity by using wind turbines. Thus the basic components of wind turbines are described. Wind speed is an important factor to wind energy. So the features of wind speed are analyzed, and the wind energy is calculated. Second, the technical properties of solar photovoltaic power are discussed, including photovoltaic cells and modules, battery, inverter and photovoltaic controller. Photovoltaic energy is also analyzed and calculated. Third, the environmental impacts of wind power and solar photovoltaic power are presented. Finally, the relevant conclusions are drawn.展开更多
The photovoltaic sector in Morocco is a serious option for the future. The integration of this type of energy into the grid has a considerable effect on the adequacy of the grid. The objective of this work is to asses...The photovoltaic sector in Morocco is a serious option for the future. The integration of this type of energy into the grid has a considerable effect on the adequacy of the grid. The objective of this work is to assess the reliability of the Moroccan power grid at the hierarchical level I (HLI: load coverage under the assumption of infinite node) using a non-sequential Monte Carlo simulation in which photovoltaic generation is introduced. In order to lead such a study, a model was used in order to calculate the hourly solar radiation and to determine the time evolution of the electrical power produced by photovoltaic power plants. Finally, we also compared the impact of both PV and wind generations in terms of adequacy of the Moroccan electrical supply.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery sys...To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.展开更多
Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply...Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.展开更多
Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and...Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.展开更多
The world is heading towards renewable energy, but the two key disputes that stop its well-known adoption are the power production level and the price of the production. Distributed generation (DG), and hybrid systems...The world is heading towards renewable energy, but the two key disputes that stop its well-known adoption are the power production level and the price of the production. Distributed generation (DG), and hybrid systems with battery backup are the solution for uninterrupted power supply. It is obtained using the Multi-Objective Genetic Algorithm (NSGA II). Techno-economic methodology is used in this proposed system for the size optimization. The result is based on the system cost, in order to meet the load requirements. The effect of temporal sampling is optimized using low-rate temporal data. It is compared with hybrid DC microgrid, which has been optimized using high temporal resolution data.展开更多
In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regi...In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources.展开更多
There is recent interest in using model hubs–a collection of pre-trained models–in computer vision tasks.To employ a model hub,we first select a source model and then adapt the model for the target to compensate for...There is recent interest in using model hubs–a collection of pre-trained models–in computer vision tasks.To employ a model hub,we first select a source model and then adapt the model for the target to compensate for differences.There still needs to be more research on model selection and adaption for renewable power forecasts.In particular,none of the related work examines different model selection and adaptation strategies for neural network architectures.Also,none of the current studies investigates the influence of available training samples and considers seasonality in the evaluation.We close these gaps by conducting the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast,adopting recent developments from the field of computer vision on 667 wind and photovoltaic parks from six datasets.We simulate different amounts of training samples for each season to calculate informative forecast errors.We examine the marginal likelihood and forecast error for model selection for those amounts.Furthermore,we study four adaption strategies.As an extension of the current state of the art,we utilize a Bayesian linear regression for forecasting the response based on features extracted from a neural network.This approach outperforms the baseline with only seven days of training data and shows that fine-tuning is not beneficial with less than three months of data.We further show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach such that we have a similar mean error with only 30 days of training data which is otherwise only possible with an entire year of training data.We achieve a mean error of 9.8 and 14 percent for the most realistic dataset for PV and wind with only seven days of training data.展开更多
In a DC/AC microgrid system,the issues of DC bus voltage regulation and power sharing have been the subject of a significant amount of research.Integra-tion of renewable energy into the grid involves multiple converte...In a DC/AC microgrid system,the issues of DC bus voltage regulation and power sharing have been the subject of a significant amount of research.Integra-tion of renewable energy into the grid involves multiple converters and these are vulnerable to perturbations caused by transient events.To enhance the flexibility and controllability of the grid connected converter(GCC),this paper proposes a common DC bus voltage maintenance and power sharing control strategy of a GCC for a DC/AC microgrid.A maximum power point tracking algorithm is employed to enhance the power delivered by the wind turbine and photovoltaic module.The proposed control strategy consists of primary and secondary as-pects.In the primary layer control,the DC bus voltage is regulated by the GCC.In the secondary layer,the DC bus voltage is maintained by the energy storage device.This ensures reliable power for local loads during grid failures,while power injection to the grid is controlled by an en-ergy management algorithm followed by reference gen-eration of inductor current in the GCC.The proposed control strategy operates in different modes of DC voltage regulation,power injection to the grid and a hybrid op-erating mode.It provides wide flexible control and en-sures the reliable operation of the microgrid.The pro-posed and conventional techniques are compared for a 15.8 kW DC/AC microgrid system using the MATLAB/Simulink environment.The simulation results demonstrate the transient behaviour of the system in different operating conditions.The proposed control technique is twice as fast in its transient response and produces less oscillation than the conventional system.Index Terms—Wind energy,photovoltaic energy,DC/AC microgrid,battery energy storage system,co-ordinated control.展开更多
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
基金supported by the Natural Science Foundation of China(Grant No.52076079)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 51577075)
文摘Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064034)the Leading Talents Project of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)+1 种基金the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant Nos.2022AAC03643 and2022AAC03117)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China(Grant No.2022BDE03006)。
文摘Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.
基金supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052)。
文摘The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.
基金supported in part by the Natural Science Foundation of Shandong Province(ZR2021QE289)in part by State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22201).
文摘The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II.
文摘Most of electricity power in China comes from coal and hydropower. Already, China must import nearly half of its oil. Concerns about power capacity shortages and air pollution are all adding urgency and pressure to switch to alternative technologies and renewable energy. Among renewable energy sources, wind power and solar photovoltaic power are playing key roles in China, and are the fastest-growing power generation technologies. So this paper focuses on them and analyzes the corresponding technical properties of them. First of all, wind power transforms the kinetic energy from the wind into electricity by using wind turbines. Thus the basic components of wind turbines are described. Wind speed is an important factor to wind energy. So the features of wind speed are analyzed, and the wind energy is calculated. Second, the technical properties of solar photovoltaic power are discussed, including photovoltaic cells and modules, battery, inverter and photovoltaic controller. Photovoltaic energy is also analyzed and calculated. Third, the environmental impacts of wind power and solar photovoltaic power are presented. Finally, the relevant conclusions are drawn.
文摘The photovoltaic sector in Morocco is a serious option for the future. The integration of this type of energy into the grid has a considerable effect on the adequacy of the grid. The objective of this work is to assess the reliability of the Moroccan power grid at the hierarchical level I (HLI: load coverage under the assumption of infinite node) using a non-sequential Monte Carlo simulation in which photovoltaic generation is introduced. In order to lead such a study, a model was used in order to calculate the hourly solar radiation and to determine the time evolution of the electrical power produced by photovoltaic power plants. Finally, we also compared the impact of both PV and wind generations in terms of adequacy of the Moroccan electrical supply.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
文摘To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.
文摘Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.
文摘Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.
文摘The world is heading towards renewable energy, but the two key disputes that stop its well-known adoption are the power production level and the price of the production. Distributed generation (DG), and hybrid systems with battery backup are the solution for uninterrupted power supply. It is obtained using the Multi-Objective Genetic Algorithm (NSGA II). Techno-economic methodology is used in this proposed system for the size optimization. The result is based on the system cost, in order to meet the load requirements. The effect of temporal sampling is optimized using low-rate temporal data. It is compared with hybrid DC microgrid, which has been optimized using high temporal resolution data.
文摘In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources.
基金This work results from the project TRANSFER(01IS20020B)funded by BMBF(German Federal Ministry of Education and Research).
文摘There is recent interest in using model hubs–a collection of pre-trained models–in computer vision tasks.To employ a model hub,we first select a source model and then adapt the model for the target to compensate for differences.There still needs to be more research on model selection and adaption for renewable power forecasts.In particular,none of the related work examines different model selection and adaptation strategies for neural network architectures.Also,none of the current studies investigates the influence of available training samples and considers seasonality in the evaluation.We close these gaps by conducting the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast,adopting recent developments from the field of computer vision on 667 wind and photovoltaic parks from six datasets.We simulate different amounts of training samples for each season to calculate informative forecast errors.We examine the marginal likelihood and forecast error for model selection for those amounts.Furthermore,we study four adaption strategies.As an extension of the current state of the art,we utilize a Bayesian linear regression for forecasting the response based on features extracted from a neural network.This approach outperforms the baseline with only seven days of training data and shows that fine-tuning is not beneficial with less than three months of data.We further show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach such that we have a similar mean error with only 30 days of training data which is otherwise only possible with an entire year of training data.We achieve a mean error of 9.8 and 14 percent for the most realistic dataset for PV and wind with only seven days of training data.
基金supported by Prince Sultan University,Riyadh,Saudi Arabia,under research grant SEED-2022-CE-95.
文摘In a DC/AC microgrid system,the issues of DC bus voltage regulation and power sharing have been the subject of a significant amount of research.Integra-tion of renewable energy into the grid involves multiple converters and these are vulnerable to perturbations caused by transient events.To enhance the flexibility and controllability of the grid connected converter(GCC),this paper proposes a common DC bus voltage maintenance and power sharing control strategy of a GCC for a DC/AC microgrid.A maximum power point tracking algorithm is employed to enhance the power delivered by the wind turbine and photovoltaic module.The proposed control strategy consists of primary and secondary as-pects.In the primary layer control,the DC bus voltage is regulated by the GCC.In the secondary layer,the DC bus voltage is maintained by the energy storage device.This ensures reliable power for local loads during grid failures,while power injection to the grid is controlled by an en-ergy management algorithm followed by reference gen-eration of inductor current in the GCC.The proposed control strategy operates in different modes of DC voltage regulation,power injection to the grid and a hybrid op-erating mode.It provides wide flexible control and en-sures the reliable operation of the microgrid.The pro-posed and conventional techniques are compared for a 15.8 kW DC/AC microgrid system using the MATLAB/Simulink environment.The simulation results demonstrate the transient behaviour of the system in different operating conditions.The proposed control technique is twice as fast in its transient response and produces less oscillation than the conventional system.Index Terms—Wind energy,photovoltaic energy,DC/AC microgrid,battery energy storage system,co-ordinated control.