This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind pow...Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind power cannot be utilized. To solve these two problems, a novel hybrid system is designed based on PV/thermal systems, in which PV modules are cooled with fans driven by a wind turbine. This paper studies the practicability of the novel hybrid system. First, the electrical performance of the wind turbine is compared using a fan and battery load,respectively. Second, different types and numbers of fans are tested to obtain the largest air volume. Third, the height of the air duct on the back of the PV module is optimized and the cooling effect is studied. Results show that a 24 V DC fan is more appropriate for the novel system than a 12 V DC fan, as it provides a greater air volume, and with a switch wind speed of 3.0 m/s the power of PV module shows a maximum increase of 8.0%.展开更多
Energy is critical to the economic growth and social development of any country. Indigenous energy resources need to be developed to the optimum level to minimize dependence on imported fuels, subject to resolving eco...Energy is critical to the economic growth and social development of any country. Indigenous energy resources need to be developed to the optimum level to minimize dependence on imported fuels, subject to resolving economic, environmental and social constraints. This led to an increase in research and development as well as investments in the renewable energy industry in search of ways to meet the energy demand and to reduce the dependency on fossil fuels. Wind and solar energy are becoming popular owing to the abundance, availability and ease of harnessing the energy for electrical power generation. This paper focuses on an integrated hybrid renewable energy system consisting of wind and solar energies. Many parts of Libya have the potential for the development of economic power generation, so maps locations were used to identify where both wind and solar potentials are high. The focal point of this paper is to describe and evaluate a wind-solar hybrid power generation system for a selected location. Grid-tied power generation systems make use of solar PV or wind turbines to produce electricity and supply the load by connecting to the grid. In this study, the HOMER (Hybrid Optimization Model for Electric Renewable) computer modeling software was used to model the power system, its physical behavior and its life cycle cost. Computer modeling software was used to model the power system, its physical behavior and its life cycle cost. The hybrid power system was designed for a building at the University of Al-Marj (MARJU). Through the use of simulations, the installation of ten 100-kW wind turbines and 150-KW solar PV was evaluated.展开更多
The paper presents the next generation of power energy systems using solar- and wind-energy systems for the country of Jordan. Presently with the oil prices are on the rise, the cost of electrical power production is ...The paper presents the next generation of power energy systems using solar- and wind-energy systems for the country of Jordan. Presently with the oil prices are on the rise, the cost of electrical power production is very high. The opportunity of a large wind and solar hybrid power production is being explored. Sights are chosen to produce electricity using the wind in the Mountains in Northern Jordan and the sun in the Eastern Desert. It is found that the cost of windmill farm to produce 100 - 150 MW is US$290 million while solar power station to produce 100 MW costs US$560 million. The electrical power costs US$0.02/kWh for the wind power and US$0.077 for the solar power. The feasibility for using wind and solar energies is now when the price oil reaches US$ 100.00 per barrel. The paper also discusses different power electronics circuits and control methods to link the renewable energy to the national grid. This paper also looks at some of the modern power electronics converters and electrical generators, which have improved significantly solar and wind energy technologies.展开更多
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit...Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.展开更多
This paper proposes the most feasible technical and environmentally friendly hybrid power system configuration;a stand-alone hybrid wind-solar energy system with battery storage for a residential area of an Agro-indus...This paper proposes the most feasible technical and environmentally friendly hybrid power system configuration;a stand-alone hybrid wind-solar energy system with battery storage for a residential area of an Agro-industrial Company, Cameroon Development Cooperation (CDC), with headquarters in Bota-Limbe, south west region, Cameroon. The power network of the CDC Bota-Limbe Camp amongst other camps, which accommodates plantation workers, is plagued with challenges such as reliance on grid power which is unreliable, poor power quality which endangers home appliances and a spider webbed transmission system that poses as a threat to the lives of plantation workers. This paper addresses those concerns by designing a modular hybrid solar-wind renewable energy system for the camp. Limbe is a coastal area with proven existence of wind and solar resources. It is expected that the proposed system, if adopted and well implemented, will provide huge opportunities for the CDC in several other locations in Cameroon where there is adequate supply of renewable energy resources.展开更多
A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existi...A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.展开更多
This work is a contribution to the study of hybrid systems for converting solar and wind energy into electricity in Burkina Faso. The approach consists of evaluating and analyzing the production of a wind turbine and ...This work is a contribution to the study of hybrid systems for converting solar and wind energy into electricity in Burkina Faso. The approach consists of evaluating and analyzing the production of a wind turbine and a solar field in order to optimize the production of all the technologies. The results obtained made it possible to evaluate the operating performance of the installation and to show the complementarity between the two energy sources with regard to temporary and seasonal variations in resources. During nighttime periods or periods of low sunlight, the wind turbine is a good alternative to energy storage by batteries, the output of the wind turbine can be up to 853.76 W. It was also a question of proposing solutions for optimizing the hybrid system through the automation of the hybrid charge regulator. A minimum height of 30 m above the ground has been chosen as the optimum height for the wind turbine.展开更多
If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of s...If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.展开更多
Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar...Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.展开更多
Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid ...Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.展开更多
The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil th...The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.展开更多
以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度...以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度,在多时间尺度下灵活规划发电主体出力。首先,日前调度以微电网经济性运行为目标,利用全生命周期理论建立经济模型,计及储能电池荷电状态(state of charge,SOC)对寿命的影响;其次,日内实时调度以供电稳定性为目标,充分考虑预测误差给系统带来的可能性崩溃,利用储能PQ源实时修正VF源的功率偏差,改善储能VF源的健康状态;最后,通过算例仿真,得到满足微电网经济、稳定运行的综合优化调度方案,并验证了该策略的有效性和合理性。展开更多
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
文摘Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind power cannot be utilized. To solve these two problems, a novel hybrid system is designed based on PV/thermal systems, in which PV modules are cooled with fans driven by a wind turbine. This paper studies the practicability of the novel hybrid system. First, the electrical performance of the wind turbine is compared using a fan and battery load,respectively. Second, different types and numbers of fans are tested to obtain the largest air volume. Third, the height of the air duct on the back of the PV module is optimized and the cooling effect is studied. Results show that a 24 V DC fan is more appropriate for the novel system than a 12 V DC fan, as it provides a greater air volume, and with a switch wind speed of 3.0 m/s the power of PV module shows a maximum increase of 8.0%.
文摘Energy is critical to the economic growth and social development of any country. Indigenous energy resources need to be developed to the optimum level to minimize dependence on imported fuels, subject to resolving economic, environmental and social constraints. This led to an increase in research and development as well as investments in the renewable energy industry in search of ways to meet the energy demand and to reduce the dependency on fossil fuels. Wind and solar energy are becoming popular owing to the abundance, availability and ease of harnessing the energy for electrical power generation. This paper focuses on an integrated hybrid renewable energy system consisting of wind and solar energies. Many parts of Libya have the potential for the development of economic power generation, so maps locations were used to identify where both wind and solar potentials are high. The focal point of this paper is to describe and evaluate a wind-solar hybrid power generation system for a selected location. Grid-tied power generation systems make use of solar PV or wind turbines to produce electricity and supply the load by connecting to the grid. In this study, the HOMER (Hybrid Optimization Model for Electric Renewable) computer modeling software was used to model the power system, its physical behavior and its life cycle cost. Computer modeling software was used to model the power system, its physical behavior and its life cycle cost. The hybrid power system was designed for a building at the University of Al-Marj (MARJU). Through the use of simulations, the installation of ten 100-kW wind turbines and 150-KW solar PV was evaluated.
文摘The paper presents the next generation of power energy systems using solar- and wind-energy systems for the country of Jordan. Presently with the oil prices are on the rise, the cost of electrical power production is very high. The opportunity of a large wind and solar hybrid power production is being explored. Sights are chosen to produce electricity using the wind in the Mountains in Northern Jordan and the sun in the Eastern Desert. It is found that the cost of windmill farm to produce 100 - 150 MW is US$290 million while solar power station to produce 100 MW costs US$560 million. The electrical power costs US$0.02/kWh for the wind power and US$0.077 for the solar power. The feasibility for using wind and solar energies is now when the price oil reaches US$ 100.00 per barrel. The paper also discusses different power electronics circuits and control methods to link the renewable energy to the national grid. This paper also looks at some of the modern power electronics converters and electrical generators, which have improved significantly solar and wind energy technologies.
文摘Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.
文摘This paper proposes the most feasible technical and environmentally friendly hybrid power system configuration;a stand-alone hybrid wind-solar energy system with battery storage for a residential area of an Agro-industrial Company, Cameroon Development Cooperation (CDC), with headquarters in Bota-Limbe, south west region, Cameroon. The power network of the CDC Bota-Limbe Camp amongst other camps, which accommodates plantation workers, is plagued with challenges such as reliance on grid power which is unreliable, poor power quality which endangers home appliances and a spider webbed transmission system that poses as a threat to the lives of plantation workers. This paper addresses those concerns by designing a modular hybrid solar-wind renewable energy system for the camp. Limbe is a coastal area with proven existence of wind and solar resources. It is expected that the proposed system, if adopted and well implemented, will provide huge opportunities for the CDC in several other locations in Cameroon where there is adequate supply of renewable energy resources.
文摘A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.
文摘This work is a contribution to the study of hybrid systems for converting solar and wind energy into electricity in Burkina Faso. The approach consists of evaluating and analyzing the production of a wind turbine and a solar field in order to optimize the production of all the technologies. The results obtained made it possible to evaluate the operating performance of the installation and to show the complementarity between the two energy sources with regard to temporary and seasonal variations in resources. During nighttime periods or periods of low sunlight, the wind turbine is a good alternative to energy storage by batteries, the output of the wind turbine can be up to 853.76 W. It was also a question of proposing solutions for optimizing the hybrid system through the automation of the hybrid charge regulator. A minimum height of 30 m above the ground has been chosen as the optimum height for the wind turbine.
文摘If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.
文摘Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.
文摘Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.
文摘The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.
文摘以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度,在多时间尺度下灵活规划发电主体出力。首先,日前调度以微电网经济性运行为目标,利用全生命周期理论建立经济模型,计及储能电池荷电状态(state of charge,SOC)对寿命的影响;其次,日内实时调度以供电稳定性为目标,充分考虑预测误差给系统带来的可能性崩溃,利用储能PQ源实时修正VF源的功率偏差,改善储能VF源的健康状态;最后,通过算例仿真,得到满足微电网经济、稳定运行的综合优化调度方案,并验证了该策略的有效性和合理性。