The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly...The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. T...This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.展开更多
Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load...Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.展开更多
Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observationa...Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.展开更多
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ...The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.展开更多
The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal...The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal winter in the northern Beibu Gulf and it was northeastward in the lower layer. This northeastward current was reproduced by a 3 D baroclinic model in this study. It's found that the counter-wind deep current(referred to as ‘CWDC' hereinafter) strengthened from September to November but weakened from December to the following February. A closed meridional circulation in vertical direction was found in the northern Beibu Gulf, including CWDC, surface southwestward current, an upwelling, and a downwelling. The temporal variation process of the meridional circulation was similar to that of CWDC, with strength and range stronger in November and December than in other four months. Similar to the variation process of CWDC, the monsoon wind changed from weak easterly wind in September to strong northeasterly wind in November and December, and it was transformed into weak southeasterly wind in February again. The sensitive experiments showed that CWDC and the meridional circulation were controlled by the monsoon wind and were adjusted by heat flux-and tide-induced mixing, respectively. According to the momentum balance equation, it can be revealed the counter-wind deep current is a compensation current which is induced by the surface elevation gradient balanced by the Coriolis force, vertical diffusion and baroclinic pressure gradient.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
By taking into consideration the effects of ocean surface wave-induced Stokes drift velocity Un, and current velocity Uc on the drag coefficient, the spatial distributions of drag coefficient and wind stress in 2004 a...By taking into consideration the effects of ocean surface wave-induced Stokes drift velocity Un, and current velocity Uc on the drag coefficient, the spatial distributions of drag coefficient and wind stress in 2004 are computed over the tropical and northern Pacific using an empirical drag coefficient parameterization formula based on wave steepness and wind speed. The global ocean current field is generated from the Hybrid Coordinate Ocean Model (HYCOM) and the wave data are generated from Wavewatch Ill (WW3). The spatial variability of the drag coefficient and wind stress is analyzed. Preliminary results indicate that the ocean surface Stokes drift velocity and current velocity exert an important influence on the wind stress. The results also show that consideration of the effects of the ocean surface Stokes drift velocity and current velocity on the wind stress can significantly improve the modeling of ocean circulation and air-sea interaction processes.展开更多
For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power au...For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system.Besides RF(Radio Frequency) wave heating,neutral beam injection(NBI) is an effective heating and current drive method in fusion research.NBCD(Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak.The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code.At the condition of low plasma current and moderate plasma density,neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.展开更多
In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with ir...In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.展开更多
By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the...By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.展开更多
The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for ...The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for the circulation: tides, winds and buoyancy gradients. The analysis of the current data obtained at the Skyway Bridge Station shows these three components of the circulation: the tidal currents are nearly uniform with depth; a vigorous and persistent buoyancy-driven mean now is directed into the bay at this location with speed of about 6 -- 8 cm/s; and synoptic scale wind fluctuations result in similarly large current fluctuations with winds blowing into the bay causing currents to flow out of the bay, and the versa.展开更多
A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximat...A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.展开更多
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the oce...In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.展开更多
Transformer winding deformation?is one of the main types of transformer faults. To check if a power transformer is being under winding deformation, the transformer can be connected in a current transformer during its ...Transformer winding deformation?is one of the main types of transformer faults. To check if a power transformer is being under winding deformation, the transformer can be connected in a current transformer during its testing. A transformer winding simulating model is set up under this connecting manner. Then the simulation has been performed with?current source which is the frequency sweep power. The simulation results show that the winding deformation can be reflected effectively with current source method.?This method lays the foundation for the realization of on-line monitoring and diagnosis of the transformer neutral directly grounded side winding.展开更多
Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a signifi...Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.展开更多
基金This study was supported by the Youth Ocean Sience Funds of State Oceanic Administration under contract No. 97301.
文摘The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
文摘This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.
文摘Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201206the Innovation Group Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,under contract No.LTOZZ1201+1 种基金the National Basic Research Program under contract No.2013CB956101the National Natural Science Foundation of China under contract No.41025019
文摘Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the Tianjin Key Program of Applied Foundation and Advanced-Tech Research,China(Grant No.18JCZDJC40200)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051709)the National Natural Science Foundation of China(Grant No.51509183)
文摘The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.
基金jointly supported by the National Natural Science Foundation of China (Nos. 41566001, 41406044 and 41576024)Guangxi Natural Science Foundation (Nos. 2015GXNSFCA139023, 2018JJD150011, 2016JJF15001 and 2015GXNSFAA139247)+5 种基金Guangxi Science and Technology Development Program (Guikegong 1598016-8)Guangxi Science and Technology Major Project (Guike AA18118025)Guangxi Key Research and Development Program (Guike AB16380282)Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Qinzhou University (No. 2017KF02)the Fundamental Research Funds of Guangxi Academy of Sciences (No. 2017YJJ23005)supported by Vietnam State-Level Project KC09.14/16-20
文摘The Beibu Gulf is at an important geographical location and rich in gas, oil and biological resources. The observed currents showed that the current in the upper layer was opposite to that in the lower layer in boreal winter in the northern Beibu Gulf and it was northeastward in the lower layer. This northeastward current was reproduced by a 3 D baroclinic model in this study. It's found that the counter-wind deep current(referred to as ‘CWDC' hereinafter) strengthened from September to November but weakened from December to the following February. A closed meridional circulation in vertical direction was found in the northern Beibu Gulf, including CWDC, surface southwestward current, an upwelling, and a downwelling. The temporal variation process of the meridional circulation was similar to that of CWDC, with strength and range stronger in November and December than in other four months. Similar to the variation process of CWDC, the monsoon wind changed from weak easterly wind in September to strong northeasterly wind in November and December, and it was transformed into weak southeasterly wind in February again. The sensitive experiments showed that CWDC and the meridional circulation were controlled by the monsoon wind and were adjusted by heat flux-and tide-induced mixing, respectively. According to the momentum balance equation, it can be revealed the counter-wind deep current is a compensation current which is induced by the surface elevation gradient balanced by the Coriolis force, vertical diffusion and baroclinic pressure gradient.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金the National Basic Research Program of China (grant Nos2005CB422302, 2005CB422307 and 2007CB411806)Great Project of National Natural Science Foundation of China (No 40490263)the NOAA/NECP data server are appreciated
文摘By taking into consideration the effects of ocean surface wave-induced Stokes drift velocity Un, and current velocity Uc on the drag coefficient, the spatial distributions of drag coefficient and wind stress in 2004 are computed over the tropical and northern Pacific using an empirical drag coefficient parameterization formula based on wave steepness and wind speed. The global ocean current field is generated from the Hybrid Coordinate Ocean Model (HYCOM) and the wave data are generated from Wavewatch Ill (WW3). The spatial variability of the drag coefficient and wind stress is analyzed. Preliminary results indicate that the ocean surface Stokes drift velocity and current velocity exert an important influence on the wind stress. The results also show that consideration of the effects of the ocean surface Stokes drift velocity and current velocity on the wind stress can significantly improve the modeling of ocean circulation and air-sea interaction processes.
基金supported by National Natural Science Foundation of China(Nos.11175211,11247302)
文摘For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system.Besides RF(Radio Frequency) wave heating,neutral beam injection(NBI) is an effective heating and current drive method in fusion research.NBCD(Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak.The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code.At the condition of low plasma current and moderate plasma density,neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.
基金supported by the National Natural Science Foundation of China(Grants No.51739002 and 51479064)the World-Class Universities(Disciplines)and Characteristic Development Guidance Funds for the Central Universitiesthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(Grant No.PPZY2015A051)
文摘In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.
基金The National Natural Science Foundations of China under contract Nos 41576013 and 11362012the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.
文摘The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for the circulation: tides, winds and buoyancy gradients. The analysis of the current data obtained at the Skyway Bridge Station shows these three components of the circulation: the tidal currents are nearly uniform with depth; a vigorous and persistent buoyancy-driven mean now is directed into the bay at this location with speed of about 6 -- 8 cm/s; and synoptic scale wind fluctuations result in similarly large current fluctuations with winds blowing into the bay causing currents to flow out of the bay, and the versa.
基金The work was supported by the One Hundred Talents Project of the Chinese Academy of Sciences(Grant No.KCL14014)the Impacts of Ocean-Land-Atmosphere Interactions over the East Asian Mon soon Region on the Climate in China(EAMOLA)(Grant No:ZKCX2-SW-210)the National Outstanding Youth Science Foundation of China(Grant No.40325016).
文摘A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.
基金The National Natural Science Foundation of China under contract No.40576020
文摘In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.
文摘Transformer winding deformation?is one of the main types of transformer faults. To check if a power transformer is being under winding deformation, the transformer can be connected in a current transformer during its testing. A transformer winding simulating model is set up under this connecting manner. Then the simulation has been performed with?current source which is the frequency sweep power. The simulation results show that the winding deformation can be reflected effectively with current source method.?This method lays the foundation for the realization of on-line monitoring and diagnosis of the transformer neutral directly grounded side winding.
基金supported by State Key Laboratory of Power Transmission Equipment and System Security(No.2007DA10512711102,No.2007DA10512709202)Program of Introducing Talents of Discipline to Universities("111"Program)(No.B08036)the Fundamental Research Funds for the Central Universities(No.CDJXS11150026)
文摘Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.