Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
Heat exchangers are utilized extensively in different industries and technologies.Consequently,optimizing heat exchangers has been a major concern among researchers.Although various studies have been conducted to impr...Heat exchangers are utilized extensively in different industries and technologies.Consequently,optimizing heat exchangers has been a major concern among researchers.Although various studies have been conducted to improve the heat transfer rate,the use of a wavy wall in the presence of different types of heat transfer mechanisms has not been investigated.This study thus investigates the mixed heat transmission behavior of fluid in a horizontal channel with a cavity and a hot,wavy wall.The fluid flow in the channel is considered laminar,and the governing equations including continuity,momentum,and energy are all solved numerically.The numerical solution is stabilized by using a first-order multi-dimensional characteristic-based scheme in combination with a fifth-order Runge-Kutta method.The flow and heat transfer effects of varying Richardson numbers,Reynolds numbers,wave amplitude,wavelength,channel height,and cavity width are examined.The results indicate that the mean Nusselt number increases with an increase in Reynolds number,wave amplitude,and cavity width,while it decreases with an increase in Richardson number,wavelength,and channel height.The minimum Nusselt number is calculated to be 0.7,whereas the maximum Nusselt number is 27.09.The Nusselt number has only increased by 40%in the higher depths of the cavity,despite the Richardson number being 10,000 times larger.But this figure increases to 130%at lower depths.The mean Nusselt number is thus significantly influenced by channel height and cavity width.The influence of wave amplitude on the mean Nusselt number is twice that of wavelength.展开更多
Two dimensional,reinforced concrete building frames built on raft foundation and having infill wall panels with openings in them are analysed using the direct stiffness method.Beams and columns are modelled by beam co...Two dimensional,reinforced concrete building frames built on raft foundation and having infill wall panels with openings in them are analysed using the direct stiffness method.Beams and columns are modelled by beam column elements.Wall panels are modelled by plane stress finite elements.The raft foundation is modelled by uniaxial finite elements.The soil is modelled as half space model.Openings in wall panels are introduced by using fictitious beams between real floor beams. A computer program is written to carry out the static analysis and do the necessary comparison to show the effect of openings on the structural behavior.展开更多
The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom ...The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.展开更多
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory...The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.展开更多
With the method of separation of variables and the eigenfunction expansion employed, an analytical solution is presented for the radiation and diffraction of a rectangular structure with an opening near a vertical wal...With the method of separation of variables and the eigenfunction expansion employed, an analytical solution is presented for the radiation and diffraction of a rectangular structure with an opening near a vertical wall in oblique seas, in which the unknown coefficients are determined by the boundary conditions and matching requirement on the interface. The effects of the width of the opening and the angle of incidence on the hydrodynamic characteristics of a rectangular structure with an opening near a vertical wall are mainly studied. The comparisons of the calculation results with wall-present and with wall-absent are also made. The results indicate that the variation trends of the heave added mass and excitation force with wall-present are almost the same as those with wall-absent, and that the peak values in the former case are obviously larger than those in the latter due to the reflection of the vertical wall.展开更多
The so-called 'burst abdomen' has been described for many years and is a well-known clinical condition, whereas the concept of the 'open abdomen' is relatively new. In clinical practice, both nosologic...The so-called 'burst abdomen' has been described for many years and is a well-known clinical condition, whereas the concept of the 'open abdomen' is relatively new. In clinical practice, both nosological entities are characterized by a complex spectrum of symptoms apparently disconnected, which in many cases poses a great challenge for surgical repair. In order to assess the management of these disorders in a more comprehensive and integral fashion, the concept of 'acute postoperative open abdominal wall'(acute POAW) is presented, which in turn can be divided into 'intentional' or planned acute POAW and 'unintentional' or unplanned POAW. The understanding of the acute POAW as a single clinical process not only allows a better optimization of the ther-apeutic approach in the surgical repair of abdominal wallrelated disorders, but also the stratification and collection of data in different patient subsets, favoring a better knowledge of the wide spectrum of conditions involved in the surgical reconstruction of the abdominal wall.展开更多
Natural convection in an open end cavity with a hot inclined wall is simulated based on the lattice Boltzmann method (LBM). The physics of flow and energy transfer in open end cavities are addressed when the hot wal...Natural convection in an open end cavity with a hot inclined wall is simulated based on the lattice Boltzmann method (LBM). The physics of flow and energy transfer in open end cavities are addressed when the hot wall is inclined. The combination of the two topics (open cavity and inclined walls) is the main novelty of the present study. The effects of the angle of the hot inclined wall on the flow field and heat transfer are thoroughly investigated. The Prandtl number is fixed to 0.71 (air). The Rayleigh number and the angle of the hot inclined wall are varied in the range of 10^4 to 10^6 and 60° to 85°, respectively. The results are presented for two different aspect ratios, i.e., A = 1 and 2. The results obtained with the LBM are also compared with those of the finite volume method (FVM). The predicted results of the LBM conform to those of the FVM. The results show that by increasing the angle of the hot inclined wall and the aspect ratio of the cavity, the average Nusselt number decreases. The trend of the local Nusselt number on the inclined wall is also discussed.展开更多
Good morning, ladies and gentlemen,
In the golden autumn of Beijing, on behalf of the Organizing Committee of the Great Wall International Congress of Cardiology, and the Institute of Geriatric Cardiology at ... Good morning, ladies and gentlemen,
In the golden autumn of Beijing, on behalf of the Organizing Committee of the Great Wall International Congress of Cardiology, and the Institute of Geriatric Cardiology at Chinese PLA General Hospital, I am very delighted to extend my warmest welcome to the representatives, colleagues and distinguished guests, both domestic and abroad, to the 5th International Forum on Geriatric Cardiology.……展开更多
This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open ...This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open sections, where the behavior is considerably complicated by the coupling of tensile, bending and torsional loading modes. In the combined loading theory of thin-walled structures, it is useful to mention that for a thin-walled beam, the value of direct stress at a point on the cross-section depends on its position, the geometrical properties of the cross-section and the applied loading. This applies whether the thin-walled section is closed or open but this study will be directed primarily at the latter. Theoretical analyses of structures are fairly well established, considered in multi-various applications by many scientists. However, due to the present interest in lightweight structures, it is necessary to specify where the present theory lies. It does not, for example, deal with compression and the consequent failure modes under global and local buckling. Indeed, with the inclusion of strut buckling failure and any other unforeseen collapse modes, the need was perceived for further research into the subject. Presently, a survey of the published works has shown in the following: 1) The assumptions used in deriving the underlying theory of thin-walled beams are not clearly stated or easily understood;2) The transformations of a load system from arbitrary axis to those at the relevant centre of rotation are incomplete. Thus, an incorrect stress distribution may result in;3) Several methods are found in the recent literature for analyzing the behaviour of thin-walled open section beams under combined loading. These reveal the need appears for further study upon their torsion/flexural behaviour when referred to any arbitrary axis, a common case found in practice. This review covers the following areas: 1) Refinement to existing theory to clarify those observations made in 1 - 3 above;2) Derivation of a general elastic stiffness matrix for combined loading;3) Calculation of the stress distribution on the cross-section of a thin-walled beam. A general transformation matrix that accounts for a load system applied at an arbitrary point on the cross-section will be published in a future paper.展开更多
Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, ho...Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, however, can be only applied to structures of a single material. If the structure consists of both open- and closed-sections, the method of membrane analogy is difficult to be applied. In this paper, a new method is presented for solving the free torsion of thin-walled structures of open- and/or closed- sections with multiple materials. By utilizing a simple statically indeterminate concept, torsional equations are derived based on the equilibrium and compatibility conditions. The method presented here not only is very simple and easy to understand but also can be applied to thin-walled structures of combined open- and closed-sections with multiple materials.展开更多
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
文摘Heat exchangers are utilized extensively in different industries and technologies.Consequently,optimizing heat exchangers has been a major concern among researchers.Although various studies have been conducted to improve the heat transfer rate,the use of a wavy wall in the presence of different types of heat transfer mechanisms has not been investigated.This study thus investigates the mixed heat transmission behavior of fluid in a horizontal channel with a cavity and a hot,wavy wall.The fluid flow in the channel is considered laminar,and the governing equations including continuity,momentum,and energy are all solved numerically.The numerical solution is stabilized by using a first-order multi-dimensional characteristic-based scheme in combination with a fifth-order Runge-Kutta method.The flow and heat transfer effects of varying Richardson numbers,Reynolds numbers,wave amplitude,wavelength,channel height,and cavity width are examined.The results indicate that the mean Nusselt number increases with an increase in Reynolds number,wave amplitude,and cavity width,while it decreases with an increase in Richardson number,wavelength,and channel height.The minimum Nusselt number is calculated to be 0.7,whereas the maximum Nusselt number is 27.09.The Nusselt number has only increased by 40%in the higher depths of the cavity,despite the Richardson number being 10,000 times larger.But this figure increases to 130%at lower depths.The mean Nusselt number is thus significantly influenced by channel height and cavity width.The influence of wave amplitude on the mean Nusselt number is twice that of wavelength.
文摘Two dimensional,reinforced concrete building frames built on raft foundation and having infill wall panels with openings in them are analysed using the direct stiffness method.Beams and columns are modelled by beam column elements.Wall panels are modelled by plane stress finite elements.The raft foundation is modelled by uniaxial finite elements.The soil is modelled as half space model.Openings in wall panels are introduced by using fictitious beams between real floor beams. A computer program is written to carry out the static analysis and do the necessary comparison to show the effect of openings on the structural behavior.
文摘The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.
基金supported by the Lloyd's Register Educational Trust (The LRET) through the joint centre involving University College London, Shanghai Jiao Tong University and Harbin Engineering University
文摘The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.
基金supported by the National Natural Science Foundation of China(Grant Nos.51079082 and 51679132)the Nature Science Foundation of Shanghai City(Grant No.14ZR1419600)the Research Innovation Projects of 2013 Shanghai Postgraduate(Grant No.20131129)
文摘With the method of separation of variables and the eigenfunction expansion employed, an analytical solution is presented for the radiation and diffraction of a rectangular structure with an opening near a vertical wall in oblique seas, in which the unknown coefficients are determined by the boundary conditions and matching requirement on the interface. The effects of the width of the opening and the angle of incidence on the hydrodynamic characteristics of a rectangular structure with an opening near a vertical wall are mainly studied. The comparisons of the calculation results with wall-present and with wall-absent are also made. The results indicate that the variation trends of the heave added mass and excitation force with wall-present are almost the same as those with wall-absent, and that the peak values in the former case are obviously larger than those in the latter due to the reflection of the vertical wall.
文摘The so-called 'burst abdomen' has been described for many years and is a well-known clinical condition, whereas the concept of the 'open abdomen' is relatively new. In clinical practice, both nosological entities are characterized by a complex spectrum of symptoms apparently disconnected, which in many cases poses a great challenge for surgical repair. In order to assess the management of these disorders in a more comprehensive and integral fashion, the concept of 'acute postoperative open abdominal wall'(acute POAW) is presented, which in turn can be divided into 'intentional' or planned acute POAW and 'unintentional' or unplanned POAW. The understanding of the acute POAW as a single clinical process not only allows a better optimization of the ther-apeutic approach in the surgical repair of abdominal wallrelated disorders, but also the stratification and collection of data in different patient subsets, favoring a better knowledge of the wide spectrum of conditions involved in the surgical reconstruction of the abdominal wall.
文摘Natural convection in an open end cavity with a hot inclined wall is simulated based on the lattice Boltzmann method (LBM). The physics of flow and energy transfer in open end cavities are addressed when the hot wall is inclined. The combination of the two topics (open cavity and inclined walls) is the main novelty of the present study. The effects of the angle of the hot inclined wall on the flow field and heat transfer are thoroughly investigated. The Prandtl number is fixed to 0.71 (air). The Rayleigh number and the angle of the hot inclined wall are varied in the range of 10^4 to 10^6 and 60° to 85°, respectively. The results are presented for two different aspect ratios, i.e., A = 1 and 2. The results obtained with the LBM are also compared with those of the finite volume method (FVM). The predicted results of the LBM conform to those of the FVM. The results show that by increasing the angle of the hot inclined wall and the aspect ratio of the cavity, the average Nusselt number decreases. The trend of the local Nusselt number on the inclined wall is also discussed.
文摘 Good morning, ladies and gentlemen,
In the golden autumn of Beijing, on behalf of the Organizing Committee of the Great Wall International Congress of Cardiology, and the Institute of Geriatric Cardiology at Chinese PLA General Hospital, I am very delighted to extend my warmest welcome to the representatives, colleagues and distinguished guests, both domestic and abroad, to the 5th International Forum on Geriatric Cardiology.……
文摘This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open sections, where the behavior is considerably complicated by the coupling of tensile, bending and torsional loading modes. In the combined loading theory of thin-walled structures, it is useful to mention that for a thin-walled beam, the value of direct stress at a point on the cross-section depends on its position, the geometrical properties of the cross-section and the applied loading. This applies whether the thin-walled section is closed or open but this study will be directed primarily at the latter. Theoretical analyses of structures are fairly well established, considered in multi-various applications by many scientists. However, due to the present interest in lightweight structures, it is necessary to specify where the present theory lies. It does not, for example, deal with compression and the consequent failure modes under global and local buckling. Indeed, with the inclusion of strut buckling failure and any other unforeseen collapse modes, the need was perceived for further research into the subject. Presently, a survey of the published works has shown in the following: 1) The assumptions used in deriving the underlying theory of thin-walled beams are not clearly stated or easily understood;2) The transformations of a load system from arbitrary axis to those at the relevant centre of rotation are incomplete. Thus, an incorrect stress distribution may result in;3) Several methods are found in the recent literature for analyzing the behaviour of thin-walled open section beams under combined loading. These reveal the need appears for further study upon their torsion/flexural behaviour when referred to any arbitrary axis, a common case found in practice. This review covers the following areas: 1) Refinement to existing theory to clarify those observations made in 1 - 3 above;2) Derivation of a general elastic stiffness matrix for combined loading;3) Calculation of the stress distribution on the cross-section of a thin-walled beam. A general transformation matrix that accounts for a load system applied at an arbitrary point on the cross-section will be published in a future paper.
文摘Free torsion of thin-walled structures of open- and closed-sections is a classical elastic mechanics problem, which, in literature, is often solved by the method of membrane analogy. The method of membrane analogy, however, can be only applied to structures of a single material. If the structure consists of both open- and closed-sections, the method of membrane analogy is difficult to be applied. In this paper, a new method is presented for solving the free torsion of thin-walled structures of open- and/or closed- sections with multiple materials. By utilizing a simple statically indeterminate concept, torsional equations are derived based on the equilibrium and compatibility conditions. The method presented here not only is very simple and easy to understand but also can be applied to thin-walled structures of combined open- and closed-sections with multiple materials.