Effects of storage time on some properties of jatropha biodiesel were investigated over the storage time of 0 to 8 weeks at the temperature of 25℃. Such properties as water content and density were found to increase ...Effects of storage time on some properties of jatropha biodiesel were investigated over the storage time of 0 to 8 weeks at the temperature of 25℃. Such properties as water content and density were found to increase at the rates of 5 ppm and 14 kg/m3 per week respectively. These rates translate into property values which compare closely with the standard properties of fossil-diesel and properties of quality biodiesel. As a result, the jatropha biodiesel can be used as alternative fuel to fossil-diesel in compression ignition engines within 8 weeks of its production. However, the calorific value and flash point of the biodiesel decreased at the rate of 1.4℃ and 2.5 MJ/kg per week respectively. Although the flash point was within the acceptable level for quality biodiesel, the calorific values were abnormally higher than the values for quality biodiesel of about 38.7 MJ/kg. With the exception of the calorific values, the other properties were not reasonably affected.展开更多
Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated te...Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated technological, economical and energetic advantages in multiple literature evaluations concerning the large scale wind-compressed air hybrid storage system with gas turbines, the utilization of a hybrid wind-diesel system with compressed air storage (HWDCAS) has been frequently explored. These will mainly have average or small scale application such as the powering of isolated sites. It has been proven in numerous studies that the HWDCAS combined with an additional supercharging of the diesel engines will contribute to the increase of the power and efficiency of the diesel engine, the reduction of both fuel consumption and the emission of greenhouse gases (GHG). This article presents the obtained results from experimental validation of the selected design with an aim to valorize this innovative solution and become trustworthy.展开更多
This paper proposes a power control method to improve a stability of a small-scale power grid with renewable energy sources. In an isolated small- scale power grid such as an island, diesel power plant is main power s...This paper proposes a power control method to improve a stability of a small-scale power grid with renewable energy sources. In an isolated small- scale power grid such as an island, diesel power plant is main power source which has an environmental burden and expensive running cost due to high priced fossil fuel. Thus, expanding installation of the renewable energy sources such as a wind power is strongly desirable. Such fluctuating energy sources, however, harm power quality of the small-scale power grid, and in addition, conventional power plant in the small-scale power grid cannot, in general, stabilize the grid system with such fluctuating power sources. In this study, Variable Speed Doubly-Fed Induction Generator (VS-DFIG) is proposed to be in-stalled at a diesel power plant instead of a conventional Fixed Speed Synchronous Generator (FS-SG), because quick control of a power balance in the small-scale power grid can be achieved by using the inertial energy of VS-DFIG. In addition, utilization of a Battery Energy Storage System (BESS) is also considered to assist cooperatively the VS-DFIG control. As a result of the simulation analysis by using the proposed method, it is verified that frequency fluctuations due to renewable energy source can be effectively reduced by quick power control of the VS-DFIG compared to the conventional FS-SG, and further control ability can be obtained by utilizing BESS. Moreover, the transient stability of a small-scale power grid during a grid fault can also be enhanced.展开更多
For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, c...For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, considering a cooperative strategy between diesel generator (hereinafter referred to as DE) and battery energy storage system (BESS). The optimum economic operation range of DE and the optimal set-point between DE and BESS are presented in the cooperative dispatch strategy, in which BESS is used fully to enable DE in a lower cost and higher efficient way. The results are analyzed under various operation conditions and also prove the validity of the DrODosed method.展开更多
文摘Effects of storage time on some properties of jatropha biodiesel were investigated over the storage time of 0 to 8 weeks at the temperature of 25℃. Such properties as water content and density were found to increase at the rates of 5 ppm and 14 kg/m3 per week respectively. These rates translate into property values which compare closely with the standard properties of fossil-diesel and properties of quality biodiesel. As a result, the jatropha biodiesel can be used as alternative fuel to fossil-diesel in compression ignition engines within 8 weeks of its production. However, the calorific value and flash point of the biodiesel decreased at the rate of 1.4℃ and 2.5 MJ/kg per week respectively. Although the flash point was within the acceptable level for quality biodiesel, the calorific values were abnormally higher than the values for quality biodiesel of about 38.7 MJ/kg. With the exception of the calorific values, the other properties were not reasonably affected.
文摘Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated technological, economical and energetic advantages in multiple literature evaluations concerning the large scale wind-compressed air hybrid storage system with gas turbines, the utilization of a hybrid wind-diesel system with compressed air storage (HWDCAS) has been frequently explored. These will mainly have average or small scale application such as the powering of isolated sites. It has been proven in numerous studies that the HWDCAS combined with an additional supercharging of the diesel engines will contribute to the increase of the power and efficiency of the diesel engine, the reduction of both fuel consumption and the emission of greenhouse gases (GHG). This article presents the obtained results from experimental validation of the selected design with an aim to valorize this innovative solution and become trustworthy.
文摘This paper proposes a power control method to improve a stability of a small-scale power grid with renewable energy sources. In an isolated small- scale power grid such as an island, diesel power plant is main power source which has an environmental burden and expensive running cost due to high priced fossil fuel. Thus, expanding installation of the renewable energy sources such as a wind power is strongly desirable. Such fluctuating energy sources, however, harm power quality of the small-scale power grid, and in addition, conventional power plant in the small-scale power grid cannot, in general, stabilize the grid system with such fluctuating power sources. In this study, Variable Speed Doubly-Fed Induction Generator (VS-DFIG) is proposed to be in-stalled at a diesel power plant instead of a conventional Fixed Speed Synchronous Generator (FS-SG), because quick control of a power balance in the small-scale power grid can be achieved by using the inertial energy of VS-DFIG. In addition, utilization of a Battery Energy Storage System (BESS) is also considered to assist cooperatively the VS-DFIG control. As a result of the simulation analysis by using the proposed method, it is verified that frequency fluctuations due to renewable energy source can be effectively reduced by quick power control of the VS-DFIG compared to the conventional FS-SG, and further control ability can be obtained by utilizing BESS. Moreover, the transient stability of a small-scale power grid during a grid fault can also be enhanced.
基金the National Natural Science Foundation of China(No.61703068)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1704097)+1 种基金the Chongqing Basic Science and Advanced Technology Research Project(No.cstc2016jcyjA1919)the Doctor Start-up Funding of Chongqing University of Posts and Telecommunications(No.A2016-05)
文摘For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, considering a cooperative strategy between diesel generator (hereinafter referred to as DE) and battery energy storage system (BESS). The optimum economic operation range of DE and the optimal set-point between DE and BESS are presented in the cooperative dispatch strategy, in which BESS is used fully to enable DE in a lower cost and higher efficient way. The results are analyzed under various operation conditions and also prove the validity of the DrODosed method.