To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristi...To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.展开更多
The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years.The objective of the present paper was to investigate the aerodynamic ch...The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years.The objective of the present paper was to investigate the aerodynamic characteristics of a high-speed train under such conditions in the framework of an Eulerian-Lagrangian approach.An aerodynamic model of a high-speed train was first set up,and the side force coefficient obtained from numerical simulation was compared with that provided by wind tunnel experiments to verify the accuracy of the approach.Then,the effects of the yaw angle,the resultant wind speed,and the rainfall rate on aerodynamic coefficients were analyzed.The results indicate that the aerodynamic coefficients grow almost linearly with the rainfall rate,and increase with a decrease in the resultant wind speed.Due to the impact of raindrops on the train surface and the airflow,the pressure coefficients of windward and leeward side of the train become larger with the increase of the rainfall rate.Raindrops can accelerate the airflow and suppress the vortices detachment.Moreover,the flow velocity in regions surrounding the train increases with an increase in the rainfall rate.展开更多
Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated ...Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.展开更多
Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies hav...Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies have contributed significantly to the understanding of fluid behavior and moisture response of WDR upon impacting walls.However,the quantification of absorbed rainwater by the wall remains elusive.To address this gap,this study focuses on comprehending the dynamic WDR absorption behavior of various exterior finishing materials.Specifically,nine types of finishing materials were selected as research objects and conducted field measurements.The findings reveal that WDR absorption ratio is influenced by physical parameters of materials,surface waterproofing and the cumulative WDR.Leveraging multiple regression fittings,we established an empirical WDR absorption ratio calculation mode.This model serves as a valuable reference for determining building simulation parameters regarding dynamic moisture boundary conditions on the exterior surfaces of walls.By providing empirical insights into WDR absorption,our research contributes to a more comprehensive understanding of moisture behavior in building envelopes,thereby aiding in the development of effective strategies for enhancing building performance and durability.展开更多
Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of I...Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of Inner Mongolia,which all appeared under the environments of“Western Low and Eastern Blocking” (EB)pattern.From this study,the following effects of the EB are found:(1)It affects the precipitation systems staggering in a local place and/or changes the trajectories of low votices and urges them into the same raining areas intermittently.(2)It transports water vapour into raining areas.The air flows by the west side of EB produce strong cyclonic vorticity behind EB frequently,which transports water vapour and forms mesoscale precipitation systems more favourably than the low level jets.(3)Air flows behind EB con- jugate with adequate topographic relief,which enhances the precipitation and makes the raining areas over- lapped.So that extra-intense heavy rains could occur in higher latitudes of semi-aird areas,and occasionally even in the desert region of North China. Such extra-intense heavy rains could not be explained by static local humidity and temperature only. This is also a principal discrimination between the prolonged extra-intense heavy rain and the short-range convective precipitation and/or the common precipitation.展开更多
基金Projects(20B062,19B054)supported by Excellent Youth Program of Hunan Education Department,ChinaProject(2019JJ50688)supported by Hunan Provincial Natural Science Foundation of ChinaProject(kq195004)supported by Changsha Science and Technology Bureau Project,China。
文摘To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.
基金supported by the National Natural Science Foundation of China(Grant No.51705267)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)+1 种基金National Natural Science Foundation of China(Grant No.51605397)Natural Science Foundation of Shandong Province,China(Grant No.ZR2014EEP002).
文摘The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years.The objective of the present paper was to investigate the aerodynamic characteristics of a high-speed train under such conditions in the framework of an Eulerian-Lagrangian approach.An aerodynamic model of a high-speed train was first set up,and the side force coefficient obtained from numerical simulation was compared with that provided by wind tunnel experiments to verify the accuracy of the approach.Then,the effects of the yaw angle,the resultant wind speed,and the rainfall rate on aerodynamic coefficients were analyzed.The results indicate that the aerodynamic coefficients grow almost linearly with the rainfall rate,and increase with a decrease in the resultant wind speed.Due to the impact of raindrops on the train surface and the airflow,the pressure coefficients of windward and leeward side of the train become larger with the increase of the rainfall rate.Raindrops can accelerate the airflow and suppress the vortices detachment.Moreover,the flow velocity in regions surrounding the train increases with an increase in the rainfall rate.
基金The work described in this paper was financially supported by the Shanghai Municipality Natural Science Foundation(No.21ZR1434400).
文摘Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems.
基金Shanghai Municipality Natural Science Foundation(Grant No.21ZR1434400)Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,Chongqing University,China(Grant No.LNTCCMA 20210103)National Natural Science Foundation ofChina(Grant No.51778358).
文摘Wind-driven rain(WDR)constitutes a significant source of moisture for building facades,which poses considerable challenges to both the thermal insulation performance and long-term durability of walls.Prior studies have contributed significantly to the understanding of fluid behavior and moisture response of WDR upon impacting walls.However,the quantification of absorbed rainwater by the wall remains elusive.To address this gap,this study focuses on comprehending the dynamic WDR absorption behavior of various exterior finishing materials.Specifically,nine types of finishing materials were selected as research objects and conducted field measurements.The findings reveal that WDR absorption ratio is influenced by physical parameters of materials,surface waterproofing and the cumulative WDR.Leveraging multiple regression fittings,we established an empirical WDR absorption ratio calculation mode.This model serves as a valuable reference for determining building simulation parameters regarding dynamic moisture boundary conditions on the exterior surfaces of walls.By providing empirical insights into WDR absorption,our research contributes to a more comprehensive understanding of moisture behavior in building envelopes,thereby aiding in the development of effective strategies for enhancing building performance and durability.
文摘Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of Inner Mongolia,which all appeared under the environments of“Western Low and Eastern Blocking” (EB)pattern.From this study,the following effects of the EB are found:(1)It affects the precipitation systems staggering in a local place and/or changes the trajectories of low votices and urges them into the same raining areas intermittently.(2)It transports water vapour into raining areas.The air flows by the west side of EB produce strong cyclonic vorticity behind EB frequently,which transports water vapour and forms mesoscale precipitation systems more favourably than the low level jets.(3)Air flows behind EB con- jugate with adequate topographic relief,which enhances the precipitation and makes the raining areas over- lapped.So that extra-intense heavy rains could occur in higher latitudes of semi-aird areas,and occasionally even in the desert region of North China. Such extra-intense heavy rains could not be explained by static local humidity and temperature only. This is also a principal discrimination between the prolonged extra-intense heavy rain and the short-range convective precipitation and/or the common precipitation.