期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Wind-induced vibration control of bridges using liquid column damper 被引量:3
1
作者 薛素铎 高赞明 徐幼麟 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期271-280,共10页
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t... The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge. 展开更多
关键词 long span bridge bridge deck wind-induced vibration vibration control FLUTTER BUFFETING tuned liquid column damper TLCD-bridge interaction mathematical model
下载PDF
Wind-Induced Vibration Control for Substation Frame on Viscous Damper 被引量:1
2
作者 Bingji Lan Kanghao Yan 《Computers, Materials & Continua》 SCIE EI 2020年第3期1303-1315,共13页
In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.T... In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.The time-history sample of pulsating wind load is simulated by harmonic superposition method based on Matlab software.6 kinds of viscous damper arrangement schemes have been designed,and SAP2000 finite element software is used for fine modeling and input wind speed time history load for nonlinear time history analysis.The displacement and acceleration of a typical node are the indicators of wind vibration control.The wind-induced vibration control effects of different schemes under different damping parameters have compared,and the damping parameters are analyzed for the optimal layout scheme.The results show that a viscous damper has installed in the lower layers of the substation;a viscous damper is placed between the ground column and the lattice beam.It is an integrated optimal solution.The wind-induced vibration control effect of the optimal scheme is sensitive to the viscous damper parameters,and the control effect does not increase linearly with the increase of the damping index and the damping coefficient.Corresponding to different damping indexes,the damping coefficient has a better range of values. 展开更多
关键词 Viscous damper wind-induced vibration control arrangement plan damping coefficient damping index
下载PDF
Wind-induced vibration control of long-span power transmission towers 被引量:1
3
作者 尹鹏 《Journal of Chongqing University》 CAS 2009年第2期112-124,共13页
We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup t... We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup tower is 181 m with a ground elevation of 47 m, which makes it a super flexible and wind-sensitive structure. Therefore, we should analyze the wind- resistant capacity of the system. We simulated applicable transverse fluctuating wind velocity field, developed a lead-rubber damper (LRD) for controlling wind-induced vibration of long-span transmission towers, deduced LRD calculation model parameter, and researched the best layout scheme and installation method of LRD. To calculate the wind-induced response of tower-line coupling system in seven layout schemes, we used the time history analysis method, and obtained the efficiencies of wind-induced vibration control. LRD deformation research proved that the damp of all LRDs was efficient under the designed wind velocity when they were laid along the edge of tower heads. We studied the controlling efficiency resulting fTom only applying stiffness to the tower polos where the dampers used to be laid under the designed wind velocity. The results show that the controlling efficiency was not ideal when the stiffness is increased on the poles only. Therefore, LRD should conlxibute to both the stiffness and damp of a structure to effectively reduce the dynamic response of a tower-line coupling system under strong winds. We also discussed the controlling efficiency of LRD under static winds. The results show that there was little difference between displacements derived by the finite clement time history method and those obtained by static wind method conducted by a design institute. This means the simulation on space relevant wind velocity field was accurate and reasonable. 展开更多
关键词 transmission towers lead-rubber damper wind-induced vibration control
下载PDF
Wind-induced vibration of single-layer reticulated shell structures
4
作者 张建胜 武岳 沈世钊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期494-498,共5页
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w... Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned. 展开更多
关键词 reticulated shell structures wind-induced response random simulation method in time domain wind-induced vibration coefficient
下载PDF
Case Study of Wind-Induced Vibration of a Cooling Tower Under Typhoon Environment
5
作者 XING Yuan ZHAO Lin +1 位作者 CHEN Xu GE Yaojun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期108-119,共12页
As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields ... As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions. 展开更多
关键词 cooling towers active wind tunnel non-Gaussian characteristic wind-induced vibration dynamic amplification coefficient
下载PDF
Wind tunnel study on wind-induced vibration of middle pylon of Taizhou Bridge
6
作者 Ma Rujin Zhang Zhen Chen Airong 《Engineering Sciences》 EI 2012年第3期77-80,92,共5页
Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbul... Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, wind-induced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon's construction. 展开更多
关键词 wind tunnel test aero-elastic modeL wind-induced vibration middle pylon
下载PDF
Wind Vibration Study of Long-span Steel Arch Structure of Beijing Capital International Airport 被引量:4
7
作者 周岱 马俊 +1 位作者 朱忠义 柳杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第4期429-435,共7页
The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination o... The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination of WAWS(Weighted Amplitude Wavelet Superposition) and FFT(Fast Fourier Transformation) was introduced to simulate wind velocity time series of hundreds of spatial points simultaneously. The structural shape factors of wind load was obtained from wind tunnel model test. The wind vibration factor based on structural displacement response was investigated. After comparing the computational results with wind tunnel model test data, it was found out that the two results accord with each other if wind comes from 0° direction angle, but are quite different if wind comes from 180° direction angle in the area blocked off by airport terminals. The possible reasons of this difference were analyzed. Haar wavelet was used to transform and analyze wind velocity time series and structural wind-induced dynamic responses. The relationship between exciting wind loads and structural responses was studied in time and frequency domains. 展开更多
关键词 steel arch structure wind velocity time series wind-induced vibration factor wavelet analysis
下载PDF
Wind-induced responses of super-large cooling towers 被引量:3
8
作者 柯世堂 葛耀君 +2 位作者 赵林 陈少林 Y.Tamura 《Journal of Central South University》 SCIE EI CAS 2013年第11期3216-3228,共13页
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula... Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers. 展开更多
关键词 super-large cooling towers wind-induced responses wind vibration coefficients aero-elastic model consistent coupled method
下载PDF
Passive Perforated Pipe Control Method for Wind?Induced Vibration of a High?Rise Chemical Tower 被引量:2
9
作者 LU Shanshan ZHANG Zhifu +1 位作者 ZHANG Runtao CHEN Wenli 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期99-107,共9页
Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect... Vortex-induced vibration is likely to occur when subjected to wind loads because of low horizontal stiffness,resulting in internal force and large lateral amplitude.Long-term wind-induced vibration can not only affect the normal service and durability performance of chemical towers,but also seriously endanger the safety of towers in service periods,and cause property losses.In this study,a passive control method for suppressing wind-induced vibration of chemical towers is proposed.The flow around the flow field is guided by a pre-set air-blowing channel,thus destroying the unsteady vortex shedding in the wake region of the flow field and achieving the purpose of flow control.Two accelerometers are used to measure the vibration signal of the chemical tower model with and without the perforated pipe.The control effects of the spacing and the installation position of the perforated pipe are then studied.Experimental results show that the passive perforated pipe control method can effectively reduce the vibration amplitude of the chemical tower under wind loads,and decrease the potential wind-induced vibration. 展开更多
关键词 chemical tower wind-induced vibration pneumatic control
下载PDF
Application of Lead Viscoelastic Dampers to Wind Vibration Control on Big-Span Power Transmission Tower 被引量:1
10
作者 梁政平 李黎 +1 位作者 尹鹏 段松涛 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期320-328,共9页
To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and for... To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and force response of the tower was calculated and analyzed. The results show that the control effect of lead viscoelastic dampers is very good, and the damping ratio can reach 20% or more when they are applied to the tower head. 展开更多
关键词 Transmission tower Lead viscoelastic damper wind-induced vibration control
下载PDF
Numerical Simulation Study of Vibration Characteristics of Cantilever Traffic Signal Support Structure under Wind Environment
11
作者 Meng Zhang Zhichao Zhou +1 位作者 Guifeng Zhao Fangfang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期673-698,共26页
Computational fluid dynamics(CFD)and the finite element method(FEM)are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole.By building a finite element model... Computational fluid dynamics(CFD)and the finite element method(FEM)are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole.By building a finite element model with the same scale as the actual structure and performing modal analysis,a preliminary understanding of the dynamic properties of the structure is obtained.Based on the two-way fluid-structure coupling calculation method,the wind vibration response of the structure under different incoming flow conditions is calculated,and the vibration characteristics of the structure are analyzed through the displacement time course data of the structure in the crosswind direction and along-wind direction.The results show that the maximum response of the structure increases gradually with the increase of wind speed under 90°wind direction angle,showing a vibration dispersion state,and the vibration response characteristics are following the vibration phenomenon of galloping;under 270°wind direction angle,the maximum displacement response of the structure occurs at the lower wind speed of 5 and 6m/s,and the vibration generated by the structure is vortex vibration at this time;the displacement response of the structure in along-wind direction increaseswith the increase of wind speed.The along-wind displacement response of the structure will increase with increasing wind speed,and the effective wind area and shape characteristics of the structurewill also affect the vibration response of the structure. 展开更多
关键词 Signal structure modal analysis wind-induced vibration two-way fluid-structure interaction numerical simulation
下载PDF
Statistical extremes and peak factors in wind-induced vibration of tall buildings 被引量:4
12
作者 Ming-feng HUANG Chun-man CHAN +1 位作者 Wen-juan LOU Kenny Chung-Siu KWOK 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第1期18-32,共15页
In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit me... In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings. 展开更多
关键词 Level-crossing rate (LCR) wind-induced vibration Mean extreme response Combined resultant process Peakfactor method
原文传递
Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction 被引量:1
13
作者 TAO Li-li DU Guang-sheng +2 位作者 LIU Li-ping LIU Yong-hui SHAO Zhu-feng 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期118-124,共7页
The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-ind... The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body. 展开更多
关键词 Fluid-Structure Interaction (FSI) wind-induced vibration numerical simulation
原文传递
Wind-induced vibration control of Hefei TV tower with fluid viscous damper
14
作者 Zhiqiang ZHANG Aiqun LI +1 位作者 Jianping HE Jianlei WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第3期249-254,共6页
The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind o... The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process,and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained.On the basis of the others'works,a bi-model dynamic model is proposed.Finally,a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers,and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives.Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code.The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper,and the peak acceleration responses of the upper turret is reduced by 43.4%. 展开更多
关键词 high-rise structure wind-induced response fluid viscous damper vibration control
原文传递
大跨索屋盖结构风振动力计算新方法研究 被引量:2
15
作者 毛吉化 聂竹林 +4 位作者 汪大洋 许伟 区彤 陈伟 吴福成 《振动与冲击》 EI CSCD 北大核心 2023年第5期101-112,共12页
大跨索屋盖结构风振动力响应复杂,传统采用等效静力风荷载计算其风致振动响应的适用性一直是当前大跨结构研究的热点。针对下凹型(单层马鞍形索网)和上凸型(轮辐式双层索网、索穹顶、弦支穹顶)四类典型大跨索屋盖结构,以四类结构风洞试... 大跨索屋盖结构风振动力响应复杂,传统采用等效静力风荷载计算其风致振动响应的适用性一直是当前大跨结构研究的热点。针对下凹型(单层马鞍形索网)和上凸型(轮辐式双层索网、索穹顶、弦支穹顶)四类典型大跨索屋盖结构,以四类结构风洞试验测试数据为基础,结合最近邻点插值方法研究提出了基于节点动力风荷载(模式一)和面组分区动力风荷载(模式二)两种荷载取值计算模式及其计算流程,并与传统基于等效静力风荷载的取值计算模式(模式三)进行对比,在四种不利风向角下探究四类典型索屋盖采用三种荷载取值模式时的风致振动响应。结果表明,基于模式一与模式二计算得到的索屋盖结构风振响应均较模式三要高,采用节点风荷载的取值计算模式一能更为精确地反映屋盖结构实际承担的风荷载,有效表征屋盖结构的实际风振响应;在上下游均无临近场馆影响下,下凹型和上凸型索屋盖的平均和脉动风振位移响应云图总体分布规律较为一致,但响应大小变化规律不一,下凹型呈现中间大、周边小的逐渐递减的规律,而上凸型屋盖呈现中心区域小、中间环带大、周边再次下降的变化规律。 展开更多
关键词 索屋盖 风荷载 取值模式 风振响应 风振系数
下载PDF
A review on flow-induced vibration of offshore circular cylinders 被引量:19
16
作者 Jia-song Wang Dixia Fan Ke Lin 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期415-440,共26页
As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significa... As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significance in rich physics,VIVs are paid great attentions by offshore engineers,as they are encountered in many ocean engineering applications.Recently,with the development of research and application,wake-induced vibration(WIV)for multiple cylinders and galloping for VIV suppression attachments are attracting a growing research interest.All these phenomena are connected with the flow-induced vibration(FIV).In this paper,we review and give some discussions on the FIV of offshore circular cylinders,including the research progress on the basic VIV mechanism of an isolated rigid or flexible cylinder,interference of multiple cylinders concerning WIV of multiple cylinders,practical VIV suppression and unwanted galloping for cylinder of attachments.Finally,we draw concluding remarks,give some comments and propose future research prospects,especially on the major challenges as well as potentials in the offline/online modelling and prediction of real-scale offshore structures with high-fidelity CFD methods,new experimental facilities and applications of artificial intelligence tools. 展开更多
关键词 Fluid-structure interaction(FSI) vortex induced vibration(VIV) wake-induced vibration(wiv) flow-induced vibration(FIV) GALLOPING offshore engineering circular cylinder VIV suppression
原文传递
Dynamic performance of cable-stayed bridge tower with multi-stage pendulum mass damper under wind excitations——I:Theory 被引量:4
17
作者 郭安薪 徐幼麟 李惠 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期295-306,共12页
In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limita... In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage. 展开更多
关键词 multi-stage pendulum mass damper cable-stayed bridge single column tower wind-induced vibration
下载PDF
A comprehensive review of miniatured wind energy harvesters 被引量:4
18
作者 Quan Wen Xianming He +2 位作者 Zhuang Lu Reinhard Streiter Thomas Otto 《Nano Materials Science》 CAS CSCD 2021年第2期170-185,共16页
Following the current rapid development of the Internet of Things(IoT)and wireless condition monitoring systems,energy harvesters which use ambient energy have become a key part of achieving an energy-autonomous syste... Following the current rapid development of the Internet of Things(IoT)and wireless condition monitoring systems,energy harvesters which use ambient energy have become a key part of achieving an energy-autonomous system.Miniature wind energy harvesters have attracted widespread attention because of their great potential of power density as well as the rich availability of wind energy in many possible areas of application.This article provides readers with a glimpse into the state-of-the-art of miniature wind energy harvesters.The crucial factors for them to achieve high working efficiency under lower operational wind speed excitation are analyzed.Various potential energy coupling mechanisms are discussed in detail.Design approaches for broadening operational wind-speed-range given a variety of energy coupling mechanisms are also presented,as observed in the literature.Performance enhancement mechanisms including hydrodynamic configuration optimization,and non-linear vibration pick-up structure are reviewed.Conclusions are drawn and the outlook for each coupling mechanisms is presented. 展开更多
关键词 Energy harvester Wind energy Miniature wind-induced vibration energy harvester Energy coupling mechanism Performance enhancement mechanisms
下载PDF
Wind Pressure Distribution and Wind-induced Dynamic Response for Spatial Groined Latticed Vaults 被引量:3
19
作者 马骏 周岱 包艳 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第4期391-399,共9页
The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the struct... The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed. 展开更多
关键词 wind field wind pressure space groined latticed vault (SGLV) wind-induced vibration response
原文传递
大跨度悬索桥吊索风致振动多重调谐阻尼减振技术研究 被引量:3
20
作者 柴小鹏 荆国强 吴肖波 《振动与冲击》 EI CSCD 北大核心 2023年第5期200-204,232,共6页
为了控制大跨度悬索桥的吊索风致振动,提出了基于多重调谐质量阻尼器(multiple tuned mass dampers, MTMD)的阻尼减振技术方案,并通过理论分析进行参数优化和设计。研究南沙大桥两座主航道悬索桥吊索实际风致振动响应,分析其频谱特征和... 为了控制大跨度悬索桥的吊索风致振动,提出了基于多重调谐质量阻尼器(multiple tuned mass dampers, MTMD)的阻尼减振技术方案,并通过理论分析进行参数优化和设计。研究南沙大桥两座主航道悬索桥吊索实际风致振动响应,分析其频谱特征和振动特性,确定振动控制的目标;建立吊索-MTMD分析模型,优化适用于吊索多模态控制的MTMD阻尼比、频率分布、安装位置、模态参与系数等参数,结果表明:不同于单一频率控制时的优化理论,用于吊索多模态控制的MTMD阻尼比提高为10%,扩展其振动控制的频率范围;通过考虑振型参与系数,优选4个分布主频:13.5 Hz和18.0 Hz安装在位置比为2.9%处,6.5 Hz和9.5 Hz安装在位置比为6.5%处,实现对吊索5~20 Hz风致振动的多模态控制;不同吊索在索力、型号和受控频率范围内,MTMD的设计参数可以采取统一设计方案。 展开更多
关键词 悬索桥 吊索 涡激振动(wiv) 振动控制 多重调谐质量阻尼器(MTMD)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部