期刊文献+
共找到2,859篇文章
< 1 2 143 >
每页显示 20 50 100
Mechanical behavior and damage constitutive model of sandstone under hydro-mechanical (H-M) coupling
1
作者 Tao Tan Chunyang Zhang +1 位作者 Yanlin Zhao Xiaoshuang Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期837-853,共17页
Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ... Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems. 展开更多
关键词 H-M coupling Water-saturated sandstone Mechanical mechanism energy evolution D-C model
下载PDF
Optimization Control of Multi-Mode Coupling All-Wheel Drive System for Hybrid Vehicle
2
作者 Lipeng Zhang Zijian Wang +1 位作者 Liandong Wang Changan Ren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期340-355,共16页
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy... The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously. 展开更多
关键词 Hybrid vehicle All-wheel drive Multi-mode coupling energy management Model predictive control
下载PDF
Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas
3
作者 余乐怡 陆文琪 张丽娜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期58-63,共6页
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic... The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas. 展开更多
关键词 RADIO-FREQUENCY capacitively coupled plasma HARMONICS the electron energy probability function
下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:1
4
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN Robust kernel density estimation Robust optimization Integrated demand response
下载PDF
Diffusive field coupling-induced synchronization between neural circuits under energy balance
5
作者 王亚 孙国平 任国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期255-259,共5页
When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic fi... When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance. 展开更多
关键词 field coupling SYNCHRONIZATION neural circuits Hamilton energy synapse connection
下载PDF
Prediction of Sedimentary Microfacies Distribution by Coupling Stochastic Modeling Method in Oil and Gas Energy Resource Exploitation
6
作者 Huan Wang Yingwei Di Yunfei Feng 《Energy and Power Engineering》 CAS 2023年第3期180-189,共10页
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr... In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies. 展开更多
关键词 coupling Modeling Oil and Gas energy Resource Sedimentary Microfacies Seological Model Reservoir Prediction
下载PDF
Determination of energy coupling to material in laser welding by a novel “sandwich” method 被引量:1
7
作者 张屹 史如坤 李力钧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1701-1710,共10页
A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key... A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall. 展开更多
关键词 laser welding mathematical energy coupling model "sandwich" method KEYHOLE
下载PDF
Application of the generalized quasi-complementary energy principle to the fluid-solid coupling problem
8
作者 梁立孚 刘宗民 郭庆勇 《Journal of Marine Science and Application》 2009年第1期40-45,共6页
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin... The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived. 展开更多
关键词 fluid-solid coupling elasto-dynamics generalized quasi-complementary energy principle dynamic response
下载PDF
Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma 被引量:1
9
作者 You HE Yeong-Min LIM +3 位作者 Jun-Ho LEE Ju-Ho KIM Moo-Young LEE Chin-Wook CHUNG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期69-78,共10页
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ... In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively. 展开更多
关键词 capacitively coupled plasma parallel resonance electron energy distribution function
下载PDF
Broadband energy harvesting via magnetic coupling between two movable magnets 被引量:7
10
作者 樊康旗 徐春辉 +1 位作者 王卫东 方阳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期374-381,共8页
Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezo... Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam. 展开更多
关键词 piezoelectric conversion mechanical vibration magnetic coupling energy harvesting
下载PDF
Dynamics of electromagnetic slip coupling for hydraulic power steering application and its energy-saving characteristics 被引量:2
11
作者 唐斌 江浩斌 +2 位作者 徐哲 耿国庆 徐兴 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1994-2000,共7页
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate... To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS. 展开更多
关键词 heavy-duty vehicle hydraulic power steering system electromagnetic slip coupling DYNAMICS energy saving
下载PDF
Energy Recovery Capacitance Coupling Logic and Its Synthesis Methodology
12
作者 杨骞 周润德 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第7期1334-1339,共6页
A novel energy recovery logic style ERCCL (energy recovery capacitance coupling logic) , which has good energy performance compared to the conventional CMOS logic and other advanced energy recovery logic, is propose... A novel energy recovery logic style ERCCL (energy recovery capacitance coupling logic) , which has good energy performance compared to the conventional CMOS logic and other advanced energy recovery logic, is proposed. ERCCL uses capacitance coupling to perform a logic function, so it can energy-efficiently implement a high fan-in complex logic in a single gate. ERCCL is also a type of threshold logic. The gate count of a system based on ERCCL can be significantly reduced,which,in turn,will decrease the energy loss. A threshold logic synthesis methodology for ERCCL is also presented. MCNC benchmarks are run through the proposed synthesis methodology. The results indicate that about an 80% reduction in gate count can be obtained when compared with the synthesis results of SIS. 展开更多
关键词 energy recovery threshold logic logic synthesis capacitance coupling CMOS circuits
下载PDF
Towards Production and Energy Coupling System Modeling and Simulation for Energy Optimization in the Process Industry 被引量:1
13
作者 戴毅茹 王坚 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期128-133,共6页
The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ... The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided. 展开更多
关键词 process INDUSTRY energy optimization PRODUCTION and energy coupling system PETRI NET modeling simulation
下载PDF
Coupling Enhancement of a Flexible BiFeO_(3) Film-Based Nanogenerator for Simultaneously Scavenging Light and Vibration Energies 被引量:1
14
作者 Xiao Han Yun Ji +3 位作者 Li Wu Yanlong Xia Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期137-150,共14页
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric fil... Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices. 展开更多
关键词 Ferroelectric film coupled nanogenerators Photovoltaic effect Flexoelectric effect energy collection
下载PDF
The energy release rate for hygrothermal coupling elastic materials 被引量:1
15
作者 Fan Yang Jun Wang Dapeng Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期28-33,共6页
In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value ... In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically. 展开更多
关键词 Fracture energy release rate J-integral Hygrothermal coupling problems
下载PDF
Research on Coupling Transfer Characteristics of Vibration Energy of Free Piston Linear Generator 被引量:1
16
作者 Jingyi Tian Huihua Feng +1 位作者 Yifan Chen Shuochun Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期556-567,共12页
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(... In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG. 展开更多
关键词 free piston linear generator(FPLG) coupled motion of dual-piston vibration energy transfer mechanism analysis of influencing factors
下载PDF
Ab initio potential energy surface and anharmonic vibration spectrum of NF_(3)^(+)
17
作者 陈艳南 徐建刚 +3 位作者 范江鹏 马双雄 郭甜 张云光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期327-333,共7页
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction... Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. 展开更多
关键词 ab initio methods potential energy surfaces vibration frequencies coupled resonance infrared spectra
下载PDF
Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading
18
作者 Jingyu Li Mushui Wang +3 位作者 Zhaoyuan Wu Guizhen Tian Na Zhang Guangchen Liu 《Energy Engineering》 EI 2024年第3期619-641,共23页
Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate ener... Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors.However,further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen(P2H)technology,focusing on participating in combined carbon-electricity market transactions.This study introduces an innovative Electro-Hydrogen Regional Energy System(EHRES)in this context.This system integrates renewable energy sources,a P2H system,cogeneration units,and energy storage devices.The core purpose of this integration is to optimize renewable energy utilization and minimize carbon emissions.This study aims to formulate an optimal operational strategy for EHRES,enabling its dynamic engagement in carbon-electricity market transactions.The initial phase entails establishing the technological framework of the electricity-hydrogen coupling system integrated with P2H.Subsequently,an analysis is conducted to examine the operational mode of EHRES as it participates in carbon-electricity market transactions.Additionally,the system scheduling model includes a stepped carbon trading price mechanism,considering the combined heat and power generation characteristics of the Hydrogen Fuel Cell(HFC).This facilitates the establishment of an optimal operational model for EHRES,aiming to minimize the overall operating cost.The simulation example illustrates that the coordinated operation of EHRES in carbon-electricity market transactions holds the potential to improve renewable energy utilization and reduce the overall system cost.This result carries significant implications for attaining advantages in both low-carbon and economic aspects. 展开更多
关键词 Regional energy system electro-hydrogen coupling carbon-electricity market step carbon trading coordination and optimization
下载PDF
A Dark Energy Hypothesis II
19
作者 James Togeas 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1142-1151,共10页
The article develops a cosmological model based on a hypothesis that dark energy is a cosmological variable rather than a constant. A companion paper (DEH I) derives a formula for this variable cosmological parameter ... The article develops a cosmological model based on a hypothesis that dark energy is a cosmological variable rather than a constant. A companion paper (DEH I) derives a formula for this variable cosmological parameter as well as an argument that the early universe produces it and dark matter. The developed model leads to a series of self-consistent results including a prediction that provides a test for it. The results include comparisons of the DEH and the ΛCDM theory. 展开更多
关键词 Dark energy Dark Matter Cosmological Constant coupling of Space and Time
下载PDF
Indelible Rules of Josephson Coupling Energy and Zero-Point Energy in High-Tc Cuprates
20
作者 LIUFu-Sui CHENWan-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第4期629-631,共3页
This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-T<SUB>c</SUB> cuprates. This paper also sh... This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-T<SUB>c</SUB> cuprates. This paper also shows that the values of T<SUB>c</SUB> at underdoped and overdoped regions are determined by the damage conditions of the phase coherence in the classical and the quantum XY-models, respectively. 展开更多
关键词 HIGH-T-C CUPRATES superfluid density Josephson coupling zero-point energy
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部