期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimal Scheduling Method of Cogeneration System with Heat Storage Device Based on Memetic Algorithm 被引量:1
1
作者 Haibo Li YibaoWang +2 位作者 Xinfu Pang Wei Liu Xu Zhang 《Energy Engineering》 EI 2023年第2期317-343,共27页
Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp... Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution. 展开更多
关键词 combined heat and power generation heat storage device memetic algorithm simulated annealing wind abandonment
下载PDF
CO_(2)Plume Geothermal(CPG)Systems for Combined Heat and Power Production:an Evaluation of Various Plant Configurations 被引量:1
2
作者 SCHIFFLECHNER Christopher WIELAND Christoph SPLIETHOFF Hartmut 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1266-1278,共13页
CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tre... CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tremendous worldwide potential for decarbonising both the power and heating sectors.This paper investigates three potential CPG configurations for combined heating and power generation(CHP).The present work examines scenarios with reservoir depths of 4 km and 5 km,as well as required district heating system(DHS)supply temperatures of 70℃ and 90℃.The results reveal that a two-staged serial CHP concept eventuates in the highest achievable net power output.For a thermosiphon system,the relative net power reduction by the CHP option compared with a sole power generation system is significantly lower than for a pumped system.The net power reduction for pumped systems lies between 62.6%and 22.9%.For a thermosiphon system with a depth of 5 km and a required DHS supply temperature of 70℃,the achievable net power by the most beneficial CHP option is even 9.2%higher than for sole power generation systems.The second law efficiency for the sole power generation concepts are in a range between 33.0%and 43.0%.The second law efficiency can increase up to 63.0%in the case of a CHP application.Thus,the combined heat and power generation can significantly increase the overall second law efficiency of a CPG system.The evaluation of the achievable revenues demonstrates that a CHP application might improve the economic performance of both thermosiphon and pumped CPG systems.However,the minimum heat revenue required for compensating the power reduction increases with higher electricity revenues.In summary,the results of this work provide valuable insights for the potential development of CPG systems for CHP applications and their economic feasibility. 展开更多
关键词 deep geothermal energy combined heat and power generation CO_(2)plume geothermal systems petrothermal resources carbon capture utilisation and storage
原文传递
Performance of S-CO_2 Brayton Cycle and Organic Rankine Cycle(ORC) Combined System Considering the Diurnal Distribution of Solar Radiation 被引量:6
3
作者 GAO Wei YAO Mingyu +3 位作者 CHEN Yong LI Hongzhi ZHANG Yifan ZHANG Lei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第3期463-471,共9页
This paper researches the performance of a novel supercritical carbon dioxide(S-CO_2) Brayton cycle and organic Rankine cycle(ORC) combined system with a theoretical solar radiation diurnal distribution. The new syste... This paper researches the performance of a novel supercritical carbon dioxide(S-CO_2) Brayton cycle and organic Rankine cycle(ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO_2 Brayton cycle heater, where heat releasing from the S-CO_2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids. 展开更多
关键词 solar power generation S-CO2 brayton CYCLE ORC thermal storage temperature combined CYCLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部