Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys...Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.展开更多
A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can b...A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.展开更多
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o...To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.展开更多
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the...The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.展开更多
A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM...A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.展开更多
A fully integrated class-E power amplifier(PA) at 2.4 GHz implemented in a 0. 18 μm 6-metal-layer mixed/RF CMOS ( complementary metal-oxide-semiconductor transistor ) technology is presented. A two-stage amplific...A fully integrated class-E power amplifier(PA) at 2.4 GHz implemented in a 0. 18 μm 6-metal-layer mixed/RF CMOS ( complementary metal-oxide-semiconductor transistor ) technology is presented. A two-stage amplification structure is chosen for this PA. The driving stage produces a high swing switch signal by using resonation technology. The output stage is designed as a class-E topology to realize the power amplification. Under a 1.2 V power supply, the PA delivers a maximum output power of 8. 8 dBm with a power-added efficiency (PAE) of 44%. A new power control method for the class-E power amplifier is described. By changing the amplitude and duty cycle of the signal which enters the class-E switch transistor, the output power can be covered from - 3 to 8. 8 dBm through a three-bit control word. The proposed PA can be used in low power applications, such as wireless sensor networks and biotelemetry systems.展开更多
Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for in...Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for interconnection with its neighbors. This paper outlines China's relevant policies for transnational power interconnection, and introduces the energy structure, load demand endowments, and power supply status of Xinjiang, Pakistan, and five Central Asian countries. Further, it analyzes the advantages of the multinational power interconnection from the aspects of power supply and load complementation. Finally, from the perspective of technical support and practical basis, the feasibility of interconnection between Xinjiang, Pakistan, and five Central Asian countries have been analyzed. This paper provides a theoretical basis for promoting and implementing China's "Belt and Road" power transnational interconnected development strategy.展开更多
With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper first...With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper firstly explains the benefits and design implications of the hybrid beamforming structure in terms of the mmWave spectrum characteristics,energy efficiency,data rate,communication capacity,coverage and implementation technology choices.Then after reviewing the techniques to improve the power amplifier(PA)output power and efficiency,the design considerations and test results of 60 GHz and 90 GHz mmWave PAs in bulk complementary metal oxide semiconductor(CMOS)process are shown.展开更多
随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发...随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。展开更多
基金supported by the National Key R&D Program of China (2016YFC0402209)the Major Research Plan of the National Natural Science Foundation of China (No. 91647114)
文摘Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.
文摘A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.
文摘To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.
基金supported by China Southern Power Grid Science and Technology Innovation Research Project(000000KK52220052).
文摘The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.
基金The National Natural Science Foundation of China(No. 61106024)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092120012)the Science and Technology Program of South east University (No. KJ2010402)
文摘A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z2A7)
文摘A fully integrated class-E power amplifier(PA) at 2.4 GHz implemented in a 0. 18 μm 6-metal-layer mixed/RF CMOS ( complementary metal-oxide-semiconductor transistor ) technology is presented. A two-stage amplification structure is chosen for this PA. The driving stage produces a high swing switch signal by using resonation technology. The output stage is designed as a class-E topology to realize the power amplification. Under a 1.2 V power supply, the PA delivers a maximum output power of 8. 8 dBm with a power-added efficiency (PAE) of 44%. A new power control method for the class-E power amplifier is described. By changing the amplitude and duty cycle of the signal which enters the class-E switch transistor, the output power can be covered from - 3 to 8. 8 dBm through a three-bit control word. The proposed PA can be used in low power applications, such as wireless sensor networks and biotelemetry systems.
基金Supported by the State Grid Scientific and Technological Project (Title: Research on the Development and Integration Mode of Renewable Energy in Xinjiang Power Grid under the Background of Multinational Interconnection, NY71-17-008)
文摘Inter-regional and transnational grid interconnection is necessary for energy development. Xinjiang, which is rich in renewable energy resources, is adjacent to countries in Central Asia and has great potential for interconnection with its neighbors. This paper outlines China's relevant policies for transnational power interconnection, and introduces the energy structure, load demand endowments, and power supply status of Xinjiang, Pakistan, and five Central Asian countries. Further, it analyzes the advantages of the multinational power interconnection from the aspects of power supply and load complementation. Finally, from the perspective of technical support and practical basis, the feasibility of interconnection between Xinjiang, Pakistan, and five Central Asian countries have been analyzed. This paper provides a theoretical basis for promoting and implementing China's "Belt and Road" power transnational interconnected development strategy.
基金supported by the National Natural Science Foundations of China (Nos. 61306030, 61674037)the National Key R&D Program of China (Nos.2016YFC0800400, 2018YFE0205900)the National Science and Technology Major Project (No. 2018ZX03001008)
文摘With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper firstly explains the benefits and design implications of the hybrid beamforming structure in terms of the mmWave spectrum characteristics,energy efficiency,data rate,communication capacity,coverage and implementation technology choices.Then after reviewing the techniques to improve the power amplifier(PA)output power and efficiency,the design considerations and test results of 60 GHz and 90 GHz mmWave PAs in bulk complementary metal oxide semiconductor(CMOS)process are shown.
文摘随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。
文摘针对移相器和功分器的功能融合设计,提出了一种基于慢波基片集成波导(Slow-Wave Substrate Integrated Waveguide,SW-SIW)的小型化移相功分器,两个输出分支等长带宽,可实现30°相移量.其中一个输出分支通过基片集成波导(Substrate Integrated Waveguide,SIW)实现,而另一个输出分支将互补开口谐振环(Complementary SplitRing Resonator,CSRR)加载在上层金属表面,代替传统SIW连续的金属表面,该CSRR由经典CSRR结构演变而来,同时为了降低由CSRR加载所造成的相位上的不稳定,在CSRR内部添加金属化通孔,实现SW-SIW,使得截止频率和相速度降低.测试结果表明,移相功分器在9.0~11.8 GHz频带范围内反射系数|S11|小于-10 d B,相对工作带宽为26.9%,插入损耗小于1.3 d B.两个输出端口的相位差稳定在30°±3°,幅度差小于1.4 d B,实现了等功率分配.所设计的移相功分器具有较小的尺寸和低制造成本,适合应用在相控阵天线中.