期刊文献+
共找到28,337篇文章
< 1 2 250 >
每页显示 20 50 100
Demonstration of a small‐scale power generator using supercritical CO_(2) 被引量:1
1
作者 Ligeng Li Hua Tian +7 位作者 Xin Lin Xianyu Zeng Yurong Wang Weilin Zhuge Lingfeng Shi Xuan Wang Xingyu Liang Gequn Shu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期269-290,共22页
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th... The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map. 展开更多
关键词 generator performance map power generation supercritical CO_(2) TURBINE
下载PDF
Optimization of the Gas Generator in Composite Power System with Tip-Jet Rotor
2
作者 Jianxiang Tang Yifei Wu +1 位作者 Yun Wang Jinwu Wu 《Journal of Power and Energy Engineering》 2024年第3期60-74,共15页
The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th... The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment. 展开更多
关键词 Tip-Jet Driven Rotor Composite power System Gas generator Optimization Hydrogen Peroxide Aerodynamic Characteristics Numerical Simulation
下载PDF
Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M 被引量:6
3
作者 彭建飞 宣伟民 +3 位作者 王海兵 李华俊 王英翘 王树锦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第3期300-302,共3页
A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ... A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes. 展开更多
关键词 motor generator ohmic heating power supply load matching six-phase gen-erator subtransient reactance
下载PDF
Design of Permanent Magnet Synchronous Generators for Wave Power Generation 被引量:4
4
作者 Fang Hongwei Wang Dan 《Transactions of Tianjin University》 EI CAS 2016年第5期396-402,共7页
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be... In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell. 展开更多
关键词 analytical geometry method mechanical pole-arc coefficient OCEAN wave power generation PERMANENT MAGNET SYNCHRONOUS generator
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
5
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Piezoelectric generator based on torsional modes for power harvesting from angular vibrations 被引量:1
6
作者 陈子光 胡元太 杨嘉实 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第6期779-784,共6页
Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric outpu... Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given. 展开更多
关键词 piezoelectric generator torsional vibration power harvesting EFFICIENCY
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
7
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 Battery energy storage power quality wind energy generating system.
下载PDF
Transient Analysis of Steam Generator in PWR Nuclear Power Plant 被引量:1
8
作者 M.Tahir Khaleeq Lang Wengpeng He Guoseng (School of Automation) 《Advances in Manufacturing》 SCIE CAS 1998年第2期43-50,共8页
The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics... The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant. 展开更多
关键词 nuclear power plant steam generator nonlinear mathematical model qinshan nuclear powerplant
下载PDF
A Novel Computerized Water Level Control System of PWR Steam Generator of Nuclear Power Plant 被引量:1
9
作者 M.Tahir Khaleeq Lang Wenpen He Guosen (School of Automation) 《Advances in Manufacturing》 SCIE CAS 1998年第3期56-66,共11页
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo... This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP). 展开更多
关键词 Steam generator (SG) Pressurized Water Reactor (PWR) Nuclaer power Plant (NPP) Rule based Real time Control (RRC)
下载PDF
Evaluation of Generalized Error Function via Fast-Converging Power Series
10
作者 Serdar Beji 《Advances in Pure Mathematics》 2024年第6期495-514,共20页
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power... A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders. 展开更多
关键词 generalized Error Function Gamma Function Grandi’s Paradox Fast-Converging power Series
下载PDF
Performance investigation of plasma magnetohydrodynamic power generator 被引量:1
11
作者 Hulin HUANG Linyong LI +1 位作者 Guiping ZHU Lai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第3期423-436,共14页
A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power gener... A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power generator is affected by many factors, among which the load coefficient k is of great importance. This paper reveals the effect of some system parameters on the performance by three-dimensional (3D) numerical simulation for a Faraday type MHD power generator using He/Xe as working plasma. The results show that average electrical conductivity increases first and then decreases with the addition of magnetic field intensity. Electrical conductivity reaches the maximum value of 11.05 S/m, while the applied magnetic field strength is B = 1.75 T. When B 〉 3 T, the ionization rate along the midline well keeps stable, which indicates that the ionization rate and three-body recombination rate (three kinds of particles combining to two kinds of particles) are approximately equal, and the relatively stable plasma structure of the mainstream is preserved. Efficiency of power generation of the Faraday type channel increases with an increment of the load factor. However, enthalpy extraction first increases to a certain value, and then decreases with the load factor. The enthalpy extraction rate reaches the maximum when the load coefficient k equals 0.625, which is the best performance of the power generator channel with the maximum electricity production. 展开更多
关键词 magnetohydrodynamic (MHD) power generator Faraday type generatorchannel ionization load factor magnetic field
下载PDF
Feasibility Demonstrations of Liquid Turbine Power Generator Driven by Low Temperature Heats 被引量:2
12
作者 Seiichi Deguchi Norifumi Isu +1 位作者 Hidenori Kato Saeko Miwa 《Journal of Power and Energy Engineering》 2016年第8期59-67,共9页
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp... Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers. 展开更多
关键词 Liquid Turbine power generator Low Temperature Heats Recovery Phase Changes Biphasic Medium Energy Harvesting Technology
下载PDF
Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control
13
作者 Xin Mao Hongsheng Su Jingxiu Li 《Energy Engineering》 EI 2024年第12期3929-3951,共23页
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt... The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation. 展开更多
关键词 Virtual synchronous generator(VSG) active power improved linear active disturbance rejection control(ILADRC) radial basis function(RBF)neural networks improved gray wolf optimizer(IGWO)
下载PDF
Theoretical On-Board Hydrogen Redox Electric Power Generator for Infinite Cruising Range Fuel Cell Vehicles 被引量:2
14
作者 Katsutoshi Ono 《Journal of Energy and Power Engineering》 2017年第10期646-654,共9页
The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen e... The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen electrolytic cell equipped with an electrostatic-induction potential-superposed water electrolytic cell that provides a stoichiometric H2-O2 fuel mixture during operation of the vehicle. This generator functions with zero power input, zero matter input and zero emission due to the so-called "zero power input" electrostatic-to-chemical energy conversion occurring in the electrolytic cell. Here, theoretical simulations were performed to verify the target performance of such generators, assuming a pair of FC (fuel cell) and electrolytic cell stacks, both of which are commercially available. 展开更多
关键词 Fuel cell vehicle power generator electrolytic cell FC infinite cruising range.
下载PDF
A Self-Powered Nanogenerator for the Electrical Protection of Integrated Circuits from Trace Amounts of Liquid 被引量:3
15
作者 Zhuang Hui Ming Xiao +5 位作者 Daozhi Shen Jiayun Feng Peng Peng Yangai Liu Walter WDuley YNorman Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期54-62,共9页
With the increase in the use of electronic devices in many different environments,a need has arisen for an easily implemented method for the rapid,sensitive detection of liquids in the vicinity of electronic component... With the increase in the use of electronic devices in many different environments,a need has arisen for an easily implemented method for the rapid,sensitive detection of liquids in the vicinity of electronic components.In this work,a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition(EPD).The opencircuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100μA when 6μL of water was applied.The generator is also found to have a stable and reproducible response to other liquids.An output voltage of 0.3 V was obtained after 244,876,931,and 184μs,on exposure of the generator to 6μL of water,ethanol,acetone,and methanol,respectively.The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid.In addition,the simple easily implemented sequential EPD method ensures the high mechanical strength of the device.This compact,reliable device provides a new method for the sensitive,rapid detection of extraneous liquids before they can impact the performance of electronic circuits,particularly those on printed circuit board. 展开更多
关键词 Self-powered generator Sub-millisecond response Liquid protection
下载PDF
An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)
16
作者 刘克富 邱剑 吴异凡 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期220-224,共5页
An all solid-state pulsed power generator for plasma immersion ion implantation (PIII) is described. The pulsed power system is based on a Marx circuit configuration and semi- conductor switches, which have many adv... An all solid-state pulsed power generator for plasma immersion ion implantation (PIII) is described. The pulsed power system is based on a Marx circuit configuration and semi- conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers. The operation of PIII with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs. The proposed system and its performance, as used to drive a plasma ion implantation chamber, are described in detail on the basis of the experimental results. 展开更多
关键词 PLASMA immersion ion implantation pulsed power Marx generator semicon- ductor switches
下载PDF
Fully Integrated High-Voltage Generators with Optimized Power Efficiency
17
作者 Doutreloigne Jan 《Journal of Computer and Communications》 2014年第13期1-8,共8页
This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal... This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs. 展开更多
关键词 CHARGE RECYCLING Dickson CHARGE PUMP HIGH-VOLTAGE generator power Efficiency Optimization Smart power Technology
下载PDF
Analysis on Sensitivity of Power System Stability to Generator Parameters
18
作者 Xiaoming Sun 《Journal of Power and Energy Engineering》 2019年第1期165-182,共18页
The sensitivity of power system stability (including transient and dynamic stabilities) to generator parameters (including parameters of generator model, excitation system and power system stabilizer) is analyzed in d... The sensitivity of power system stability (including transient and dynamic stabilities) to generator parameters (including parameters of generator model, excitation system and power system stabilizer) is analyzed in depth by simulations. From the tables and plots of the resultant simulated data, a number of useful rules are revealed. These rules can be directly applied to the engineering checking of generator parameters. Because the complex theoretical analyses are circumvented, the checking procedure is greatly simplified, remarkably promoting the working efficiency of electrical engineers on site. 展开更多
关键词 Sensitivity ANALYSIS power SYSTEM STABILITY Transient STABILITY Dynamic STABILITY generator PARAMETERS Excitation SYSTEM power SYSTEM Stabilizer
下载PDF
Using Neural Networks for Simulating and Predicting Core-End Temperatures in Electrical Generators: Power Uprate Application
19
作者 Carlos J. Gavilán Moreno 《World Journal of Engineering and Technology》 2015年第1期1-14,共14页
Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay clos... Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression. 展开更多
关键词 Neural Network Error Temperature Core-End generator power Uprate
下载PDF
Active Power Allocation of Virtual Synchronous Generator Using Particle Swarm Optimization Approach
20
作者 Fathin Saifur Rahman Thongchart Kerdphol +1 位作者 Masayuki Watanabe Yasunori Mitani 《Energy and Power Engineering》 2017年第4期414-424,共11页
In recent years, the penetration of renewable energy sources (RES) is increasing due to energy and environmental issues, causing several problems in the power system. These problems are usually more apparent in microg... In recent years, the penetration of renewable energy sources (RES) is increasing due to energy and environmental issues, causing several problems in the power system. These problems are usually more apparent in microgrids. One of the problems that could arise is frequency stability issue due to lack of inertia in microgrids. Lack of inertia in such system can lead to system instability when a large disturbance occurs in the system. To solve this issue, providing inertia support to the microgrids by a virtual synchronous generator (VSG) utilizing energy storage system is a promising method. In applying VSG, one important aspect is regarding the set value of the active power output from the VSG. The amount of allocated active power during normal operation should be determined carefully so that the frequency of microgrids could be restored to the allowable limits, as close as possible to the nominal value. In this paper, active power allocation of VSG using particle swarm optimization (PSO) is presented. The results show that by using VSG supported by active power allocation determined by the method, frequency stability and dynamic stability of the system could be improved. 展开更多
关键词 VIRTUAL Synchronous generator (VSG) VIRTUAL INERTIA Particle SWARM Optimization (PSO) Active power ALLOCATION Microgrid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部