Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi...Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.展开更多
Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding ...Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.展开更多
This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive po...This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive power based model reference adaptive system (PQ-MRAS) estimator in order to calculate the rotor and stator resistances of an induction motor (IM) and the use of these parameters for the detection of inter-turn short circuits (ITSC) faults in the stator of this motor. The rotor and stator resistance estimation part of the IM is performed by the PQ-MRAS method in which the rotor angular velocity is reconstructed from the interconnected high gain observer (IHGO). The ITSC fault detection part is done by the derivation of stator resistance estimated by the PQ-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">MRAS estimator. In addition to the speed sensorless detection of ITSC faults of the IM, an approach to determine the number of shorted turns based on the difference between the phase current of the healthy and faulty machine is proposed. Simulation results obtained from the MATLAB/Simulink platform have shown that the PQ-MRAS estimator using an interconnected high-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">gain observer gives very similar results to those using the speed sensor. The </span><span style="white-space:normal;font-size:10pt;font-family:;" "="">estimation errors in the cases of speed variation and load torque are al</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">mos</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">t identical. Variations in stator and rotor resistances influence the per</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">formance of the observer and lead to poor estimation of the rotor resistance. The results of ITSC fault detection using IHGO are very similar to the results in the literature using the same diagnostic approach with a speed sensor.</span>展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. ...Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.展开更多
It is difficult to accurately calculate the short-circuit impedance, due to the complexity of axial dual-low-voltage split-winding transformer winding structure. In this paper, firstly, the leakage magnetic field and ...It is difficult to accurately calculate the short-circuit impedance, due to the complexity of axial dual-low-voltage split-winding transformer winding structure. In this paper, firstly, the leakage magnetic field and short-circuit impedance model of axial dual-low-voltage split-winding transformer is established, and then the 2D and 3D leakage magnetic field are analyzed. Secondly, the short-circuit impedance and split parallel branch current distribution in different working conditions are calculated, which is based on field-circuit coupled method. At last, effectiveness and feasibility of the proposed model is verified by comparison between experiment, analysis and simulation. The results showed that the 3D analysis method is a better approach to calculate the short-circuit impedance, since its analytical value is more closer to the experimental value compared with the 2D analysis results, the finite element method calculation error is less than 2%, while the leakage flux method maximum error is 7.2%.展开更多
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s...Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.展开更多
Combining the 3/2 power law proposed by Toba with the significant wave energy balance equation for wind waves, wave growth in deep water for short fetch is investigated. It is found that the variations of wave height ...Combining the 3/2 power law proposed by Toba with the significant wave energy balance equation for wind waves, wave growth in deep water for short fetch is investigated. It is found that the variations of wave height and period with fetch have the form of power function with fractional exponents 3/8 and 1/4 respectively. Using these exponents in the power functions and through data fitting, the concise wind wave growth relations for short fetch are obtained.展开更多
Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of...Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.展开更多
Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a signifi...Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.展开更多
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ...Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.展开更多
To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreemen...To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.展开更多
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont...In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.展开更多
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll...The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.展开更多
基金supports from National Science Foundation of China(Grant No.51777121).
文摘Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.
文摘Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.
文摘This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive power based model reference adaptive system (PQ-MRAS) estimator in order to calculate the rotor and stator resistances of an induction motor (IM) and the use of these parameters for the detection of inter-turn short circuits (ITSC) faults in the stator of this motor. The rotor and stator resistance estimation part of the IM is performed by the PQ-MRAS method in which the rotor angular velocity is reconstructed from the interconnected high gain observer (IHGO). The ITSC fault detection part is done by the derivation of stator resistance estimated by the PQ-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">MRAS estimator. In addition to the speed sensorless detection of ITSC faults of the IM, an approach to determine the number of shorted turns based on the difference between the phase current of the healthy and faulty machine is proposed. Simulation results obtained from the MATLAB/Simulink platform have shown that the PQ-MRAS estimator using an interconnected high-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">gain observer gives very similar results to those using the speed sensor. The </span><span style="white-space:normal;font-size:10pt;font-family:;" "="">estimation errors in the cases of speed variation and load torque are al</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">mos</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">t identical. Variations in stator and rotor resistances influence the per</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">formance of the observer and lead to poor estimation of the rotor resistance. The results of ITSC fault detection using IHGO are very similar to the results in the literature using the same diagnostic approach with a speed sensor.</span>
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
文摘Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.
文摘It is difficult to accurately calculate the short-circuit impedance, due to the complexity of axial dual-low-voltage split-winding transformer winding structure. In this paper, firstly, the leakage magnetic field and short-circuit impedance model of axial dual-low-voltage split-winding transformer is established, and then the 2D and 3D leakage magnetic field are analyzed. Secondly, the short-circuit impedance and split parallel branch current distribution in different working conditions are calculated, which is based on field-circuit coupled method. At last, effectiveness and feasibility of the proposed model is verified by comparison between experiment, analysis and simulation. The results showed that the 3D analysis method is a better approach to calculate the short-circuit impedance, since its analytical value is more closer to the experimental value compared with the 2D analysis results, the finite element method calculation error is less than 2%, while the leakage flux method maximum error is 7.2%.
文摘Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.
基金supports from the Major State Basic Research Program(No.G1999043809)the National Natural Science Foundation(No.40076003)+1 种基金the EYTP of MOE(No.200139)support by Visiting Scholar Foundation of Key Lab.in the University.
文摘Combining the 3/2 power law proposed by Toba with the significant wave energy balance equation for wind waves, wave growth in deep water for short fetch is investigated. It is found that the variations of wave height and period with fetch have the form of power function with fractional exponents 3/8 and 1/4 respectively. Using these exponents in the power functions and through data fitting, the concise wind wave growth relations for short fetch are obtained.
基金supported by the National Natural Science Foundation of China(U22A20215 and 51537007)the Natural Science Foundation of LiaoNing Province(2021-YQ-09).
文摘Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.
基金supported by State Key Laboratory of Power Transmission Equipment and System Security(No.2007DA10512711102,No.2007DA10512709202)Program of Introducing Talents of Discipline to Universities("111"Program)(No.B08036)the Fundamental Research Funds for the Central Universities(No.CDJXS11150026)
文摘Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.
文摘Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.
基金supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology and Planning(KETEP)grant funded by the Korea Government Ministry of Knowledge Economy(No.2009T100200067)
文摘To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.
文摘In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN.
文摘The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.