期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:3
1
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 Chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
下载PDF
Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm 被引量:12
2
作者 Anish Pandey Dayal R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期47-58,共12页
This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. T... This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation. 展开更多
关键词 Singleton type-1 fuzzy Navigation Wind driven optimization Membership function Atmospheric motion
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
3
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle Structural compliance
下载PDF
An Adaptive Strategy-incorporated Integer Genetic Algorithm for Wind Farm Layout Optimization
4
作者 Tao Zheng Haotian Li +2 位作者 Houtian He Zhenyu Lei Shangce Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1522-1540,共19页
Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.W... Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA. 展开更多
关键词 Wind farm layout optimization problem Meta-heuristic algorithms ADAPTIVE Integer genetic algorithm
原文传递
On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines 被引量:2
5
作者 Yuan Yuan Jiong Tang 《Engineering》 SCIE EI 2017年第4期494-503,共10页
This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying tur... This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the related research activities into three categories: modeling and dynamics of wind turbines, active control of wind turbines, and passive control of wind turbines. Regarding turbine dynamics, we discuss the physical fundamentals and present the aeroelastic analysis tools. Regarding active control, we review pitch control, torque control, and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives. Our survey mostly focuses on blade pitch control, which is considered one of the key elements in facilitating load reduction while maintaining power capture performance. Regarding passive control, we review techniques such as tuned mass dampers, smart rotors, and microtabs. Possible future directions are suggested. 展开更多
关键词 Wind turbine Control approach Power optimization Load mitigation
下载PDF
Wind Driven Butterfly Optimization Algorithm with Hybrid Mechanism Avoiding Natural Enemies for Global Optimization and PID Controller Design 被引量:1
6
作者 Yang He Yongquan Zhou +2 位作者 Yuanfei Wei Qifang Luo Wu Deng 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2935-2972,共38页
This paper presents a Butterfly Optimization Algorithm(BOA)with a wind-driven mechanism for avoiding natural enemies known as WDBOA.To further balance the basic BOA algorithm's exploration and exploitation capabil... This paper presents a Butterfly Optimization Algorithm(BOA)with a wind-driven mechanism for avoiding natural enemies known as WDBOA.To further balance the basic BOA algorithm's exploration and exploitation capabilities,the butterfly actions were divided into downwind and upwind states.The algorithm of exploration ability was improved with the wind,while the algorithm of exploitation ability was improved against the wind.Also,a mechanism of avoiding natural enemies based on Lévy flight was introduced for the purpose of enhancing its global searching ability.Aiming at improving the explorative performance at the initial stages and later stages,the fragrance generation method was modified.To evaluate the effectiveness of the suggested algorithm,a comparative study was done with six classical metaheuristic algorithms and three BOA variant optimization techniques on 18 benchmark functions.Further,the performance of the suggested technique in addressing some complicated problems in various dimensions was evaluated using CEC 2017 and CEC 2020.Finally,the WDBOA algorithm is used proportional-integral-derivative(PID)controller parameter optimization.Experimental results demonstrate that the WDBOA based PID controller has better control performance in comparison with other PID controllers tuned by the Genetic Algorithm(GA),Flower Pollination Algorithm(FPA),Cuckoo Search(CS)and BOA. 展开更多
关键词 Butterfly optimization Algorithm(BOA) Wind Driven optimization(WDO) Benchmark functions Global optimization Proportional integral derivative(PID) METAHEURISTIC
原文传递
Investigation of Connecting Wind Turbine to Radial Distribution System on Voltage Stability Using SI Index and λ - V Curves
7
作者 Gamal Abd El-Azeem Mahmoud Eyad Saeed Solimanx Oda 《Smart Grid and Renewable Energy》 2016年第1期16-45,共30页
The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this ... The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective. 展开更多
关键词 Power Loss Radial Distribution System Si Index Voltage Stability Optimal Size and Location of Wind Turbine
下载PDF
Bi-objective Layout Optimization for Multiple Wind Farms Considering Sequential Fluctuation of Wind Power Using Uniform Design 被引量:1
8
作者 Yinghao Ma Kaigui Xie +2 位作者 Yanan Zhao Hejun Yang Dabo Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第6期1623-1635,共13页
The fluctuation of wind power brings great challenges to the secure,stable,and cost-efficient operation of the power system.Because of the time-correlation of wind speed and the wake effect of wind turbines,the layout... The fluctuation of wind power brings great challenges to the secure,stable,and cost-efficient operation of the power system.Because of the time-correlation of wind speed and the wake effect of wind turbines,the layout of wind farm has a significant impact on the wind power sequential fluctuation.In order to reduce the fluctuation of wind power and improve the operation security with lower operating cost,a bi-objective layout optimization model for multiple wind farms considering the sequential fluctuation of wind power is proposed in this paper.The goal is to determine the optimal installed capacity of wind farms and the location of wind turbines.The proposed model maximizes the energy production and minimizes the fluctuation of wind power simultaneously.To improve the accuracy of wind speed estimation and hence the power calculation,the timeshifting of wind speed between the wind tower and turbines’locations is also considered.A uniform design based two-stage genetic algorithm is developed for the solution of the proposed model.Case studies demonstrate the effectiveness of this proposed model. 展开更多
关键词 Wind farm layout optimization(WFLO) wind power fluctuation bi-objective optimization uniform design
原文传递
Optimized dispatch of wind farms with power control capability for power system restoration 被引量:7
9
作者 Yunyun XIE Changsheng LIU +3 位作者 Qiuwei WU Kairong LI Qian ZHOU Minghui YIN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第6期908-916,共9页
As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of... As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method. 展开更多
关键词 BLACKOUT Dispatch optimization of wind farm Power control of wind farm System restoration Uncertainty of wind energy
原文传递
Optimal location of a particulate matter sampling head outside an unmanned aerial vehicle
10
作者 Jing Zhang Yaqin Ji +1 位作者 Jie Zhao Jingbo Zhao 《Particuology》 SCIE EI CAS CSCD 2017年第3期153-159,共7页
Particulate matter (PM) has received considerable attention from scientists because of its adverse effects on human health. Unmanned aerial vehicles (UAVs) offer a new approach for monitoring PM in inaccessi- ble ... Particulate matter (PM) has received considerable attention from scientists because of its adverse effects on human health. Unmanned aerial vehicles (UAVs) offer a new approach for monitoring PM in inaccessi- ble or dangerous locations. Computational fluid dynamics software and a wind-tunnel experiment were used to evaluate the flow field at 20, 30, and 40m/s, as well as the trajectories of PM1, PM2.5, and PMlo. The numerical simulation results show that the PM sampling head can be installed 440-680 mm from the UAV nose, and at least 130, 135, and 145 mm below the horizontal axis for free stream velocities of 20, 30, and 40 m/s, respectively. Wind-tunnel experiment results confirmed and improved on those numer- ical results, and showed that the PM sampling head can be 500-600 mm aft the UAV nose, at vertical distances below the horizontal axis of at least 138 mm for 500-550 mm, and 157 mm for 550-600 mm. In addition, sampling points can be located at either side of the optimal ranges, not only on the center line or the UAV. 展开更多
关键词 Particulate matter CFD Wind tunnel Optimal location
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部