期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of electromagnetic characteristics of typical faults in permanent magnet wind generators 被引量:2
1
作者 Guangwei Liu Wenbin Yu +2 位作者 Xiaodong Wang Yun Teng Zhe Chen 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期103-114,共12页
Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of... Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault. 展开更多
关键词 Rotor eccentricity Stator winding short circuit Permanent magnet demagnetization Wavelet packet
下载PDF
Feature extraction of induction motor stator fault based on particle swarm optimization and wavelet packet
2
作者 WANG Pan-pan SHI Li-ping +1 位作者 HU Yong-jun MIAO Chang-xin 《Journal of Coal Science & Engineering(China)》 2012年第4期432-437,共6页
To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorith... To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method. 展开更多
关键词 induction machine stator winding intertum short circuit bare-bones particle swarm optimization feature extraction wavelet packet fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部