Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo...Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.展开更多
现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序...现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序门控图神经网络的兴趣点推荐方法。运用时序门控图神经网络(temporal gated graph neural network,TGGNN)学习POI embedding;采用注意力机制捕获用户的长期偏好;通过注意力机制融合用户的最新偏好和实时偏好,进而捕获用户的短期偏好。通过自适应的方式结合用户的长期和短期偏好,计算候选POI的推荐得分,并根据得分为用户进行POI推荐。实验结果表明,与现有方法相比,该方法在召回率和平均倒数排名这两项指标上均有较为明显的提升,因此可以取得很好的推荐效果,具有良好的应用前景。展开更多
口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(int...口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(intent detection,ID)和槽位填充(slot filling,SF).意图检测是一个语义话语分类问题,在句子层面分析话语的语义;槽位填充是一个序列标注任务,在词级层面分析话语的语义.由于意图和槽之间的密切相关性,主流的工作采用联合模型来利用跨任务的共享知识.但是ID和SF是两个具有强相关性的不同任务,它们分别表征了话语的句级语义信息和词级信息,这意味着两个任务的信息是异构的,同时具有不同的粒度.提出一种用于联合意图检测和槽位填充的异构交互结构,采用自注意力和图注意力网络的联合形式充分地捕捉两个相关任务中异构信息的句级语义信息和词级信息之间的关系.不同于普通的同构结构,所提模型是一个包含不同类型节点和连接的异构图架构,因为异构图涉及更全面的信息和丰富的语义,同时可以更好地交互表征不同粒度节点之间的信息.此外,为了更好地适应槽标签的局部连续性,利用窗口机制来准确地表示词级嵌入表示.同时结合预训练模型(BERT),分析所提出模型应用预训练模型的效果.所提模型在两个公共数据集上的实验结果表明,所提模型在意图检测任务上准确率分别达到了97.98%和99.11%,在槽位填充任务上F1分数分别达到96.10%和96.11%,均优于目前主流的方法.展开更多
Some problems encountered in developing navigational graph controlling program in ORACLE multimedia graphic development tool-Graphics such as multi-window creation,button simulation,computing descendant number and wri...Some problems encountered in developing navigational graph controlling program in ORACLE multimedia graphic development tool-Graphics such as multi-window creation,button simulation,computing descendant number and writing text etc.arc discussed,Since all kinds of algorithm related with the problems have been checked and proved to be correct,they have the feature of universal significance.展开更多
文摘Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.
文摘口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(intent detection,ID)和槽位填充(slot filling,SF).意图检测是一个语义话语分类问题,在句子层面分析话语的语义;槽位填充是一个序列标注任务,在词级层面分析话语的语义.由于意图和槽之间的密切相关性,主流的工作采用联合模型来利用跨任务的共享知识.但是ID和SF是两个具有强相关性的不同任务,它们分别表征了话语的句级语义信息和词级信息,这意味着两个任务的信息是异构的,同时具有不同的粒度.提出一种用于联合意图检测和槽位填充的异构交互结构,采用自注意力和图注意力网络的联合形式充分地捕捉两个相关任务中异构信息的句级语义信息和词级信息之间的关系.不同于普通的同构结构,所提模型是一个包含不同类型节点和连接的异构图架构,因为异构图涉及更全面的信息和丰富的语义,同时可以更好地交互表征不同粒度节点之间的信息.此外,为了更好地适应槽标签的局部连续性,利用窗口机制来准确地表示词级嵌入表示.同时结合预训练模型(BERT),分析所提出模型应用预训练模型的效果.所提模型在两个公共数据集上的实验结果表明,所提模型在意图检测任务上准确率分别达到了97.98%和99.11%,在槽位填充任务上F1分数分别达到96.10%和96.11%,均优于目前主流的方法.
文摘Some problems encountered in developing navigational graph controlling program in ORACLE multimedia graphic development tool-Graphics such as multi-window creation,button simulation,computing descendant number and writing text etc.arc discussed,Since all kinds of algorithm related with the problems have been checked and proved to be correct,they have the feature of universal significance.