The object of this article is to introduce new classes of meromorphic functions associated with conic regions. Several properties like the coefficient bounds, growth and distortion theorems, radii of starlikeness and ...The object of this article is to introduce new classes of meromorphic functions associated with conic regions. Several properties like the coefficient bounds, growth and distortion theorems, radii of starlikeness and convexity, partial sums, are investigated. Some consequences of the main results for the well-known classes of meromorphic functions are also pointed out.展开更多
This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally an...This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.展开更多
文摘The object of this article is to introduce new classes of meromorphic functions associated with conic regions. Several properties like the coefficient bounds, growth and distortion theorems, radii of starlikeness and convexity, partial sums, are investigated. Some consequences of the main results for the well-known classes of meromorphic functions are also pointed out.
基金supported by the National Natural Science Foundation of China(11532002)
文摘This paper proposes an effective algorithm to work out the linear parameter-varying (LPV) framework autopilot for the air defense missile so as to simultaneously guarantee the closed-loop system properties globally and locally, which evidently reduces the number of unknown variables and hence increases the computational efficiency. The notion of 'robust quadratic stability' is inducted to meet the global properties, including the robust stability and robust performance, while the regional pole placement scheme together with the adoption of a model matching structure is involved to satisfy the dynamic performance, including limiting the 'fast poles'. In order to reduce the conservatism, the full block multiplier is employed to depict the properties, with all specifications generalized in integral quadratic constraint frame and finally transformed into linear matrix inequalities for tractable solutions through convex optimization. Simulation results validate the performance of the designed robust LPV autopilot and the proposed framework control method integrating with the full block multiplier approach and the regional pole placement scheme, and demonstrate the efficiency of the algorithm. An efficient algorithm for the air defense missile is proposed to satisfy the required global stability and local dynamical properties by a varying controller according to the flight conditions, and shows sufficient promise in the computational efficiency and the real-time performance of the missile-borne computer system.
文摘现有工程运行数据显示,并网变流器(grid-connected converter,GCC)的动态特性与工作点密切相关。受新能源出力波动、负载投切等外部因素的影响,变流器工作点呈现随机时变特性。因此,分析整个工作区间中所有工作点的系统稳定性具有重要意义。传统阻抗/导纳分析方法可以有效分析GCC运行于特定工作点时的稳定性,但考虑系统所有可能工作点时则需重复分析,工作量大且难度较高。为解决这一难题,提出一种考虑工作点变量的多元建模方法。将工作点变量引入导纳模型,通过控制环路重构,建立GCC的多变量单输入单输出(single input single output,SISO)模型。所提模型直接包含工作点变量,因此可以有效分析变流器全工作区间动态特性。此外,综合考虑变流器最大传输限制和动态特性,提出一种基于安全运行域的稳定性分析方法,以实现多维工作区间中系统稳定性的直观表征。仿真和实验验证了所提多变量SISO模型和基于安全运行域的分析方法的正确性。所提模型和方法在分析电力电子装置运行极限、指导变流器设计和辅助功率器件发挥极限性能等工程场景中具有广泛应用潜力。