Using the method of elasticity, an analytical approach is developed to analyze the shear stress in a honeycomb wing structure with a large aspect ratio under the condition of free torsion. The formulas of shear stress...Using the method of elasticity, an analytical approach is developed to analyze the shear stress in a honeycomb wing structure with a large aspect ratio under the condition of free torsion. The formulas of shear stress, warping and angle of twist are derived. These formulas are both useful and convenient from the point of view in the structure design.展开更多
This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup...This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup, four PMMA plate specimens with pre-existing cracks under different static loading and the same dynamic loading were tested to observe the mechanical characteristics and the kinematic characteristics of blast-induced wing cracks during the propagation process, including crack length, crack velocity and dynamic stress intensity factor(SIF) at the crack tip. The results show that the behavior of the blast-induced wing crack is affected by the explosion stress wave and initial static stress, and the initial static stress with the direction being perpendicular to the wing crack propagation direction hinders crack propagation. Furthermore, the boundary constraint condition of the specimen plays an important role on the behavior of the crack propagation in the experiment.展开更多
Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress...Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.展开更多
Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive r...Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation ex- periment of a dragonfly wing (in vitro). This model was examined by the finite element analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.展开更多
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me...Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
文摘Using the method of elasticity, an analytical approach is developed to analyze the shear stress in a honeycomb wing structure with a large aspect ratio under the condition of free torsion. The formulas of shear stress, warping and angle of twist are derived. These formulas are both useful and convenient from the point of view in the structure design.
基金the financial support received from the PhD Programs Foundation of Ministry of Education of China (No. 20120023120020)the National Natural Science Foundation of China (No. 51134025)
文摘This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup, four PMMA plate specimens with pre-existing cracks under different static loading and the same dynamic loading were tested to observe the mechanical characteristics and the kinematic characteristics of blast-induced wing cracks during the propagation process, including crack length, crack velocity and dynamic stress intensity factor(SIF) at the crack tip. The results show that the behavior of the blast-induced wing crack is affected by the explosion stress wave and initial static stress, and the initial static stress with the direction being perpendicular to the wing crack propagation direction hinders crack propagation. Furthermore, the boundary constraint condition of the specimen plays an important role on the behavior of the crack propagation in the experiment.
文摘Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.
基金Project supported by the National Natural Science Foundation of China (Nos. 90305009, 10232010 and 10072066)the Innovation Project of Chinese Academy of Sciences (Nos. KJCX-SW-L04 and KJCX2-SW-L2)
文摘Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation ex- periment of a dragonfly wing (in vitro). This model was examined by the finite element analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.
文摘Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.