In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of ...In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of this, an approach to analysing flutter characteristics which combines the merit of graphic and analytic methods, is presented. Also an optimal cost function with clear physical meaning which can overcome some inherent drawbacks of linear quadratic technique, is developed. The paper has shown a numerical example of an elastic wing, in which some comparisons between the approach and 'V-G' method for calculating the critical point (Vf,wf ) are carried out as well.展开更多
Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws ...Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.展开更多
The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)por...The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)portion.Additionally,direct integrated CFD and computational structural dynamics(CSD)technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form.A reduced-order model(ROM)based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure.The closed-loop control systems designed by the sliding mode control(SMC)and linear quadratic Gaussian(LQG)control were constructed with ROM/CSD to suppress the AGARD 445.6wing flutter.The detailed implementation of the two control approaches is presented,and the flutter suppression effectiveness is discussed and compared.The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.展开更多
针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置...针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置等NES参数对颤振系统极限环振荡的抑制效果,以及NES参数对颤振系统极限环振荡临界速度的影响规律。结果表明,阻尼比越大,可以在越小的自振频率比情况下使系统进入稳定区,但需要更苛刻的NES位置要求,即越靠近机翼前缘;而阻尼比越小,则使颤振系统极限环振荡响应进入稳定区所需的NES质量越小。在NES位置靠近机翼前缘时,增大自振频率比会使极限环振荡抑制效果有明显的提升,而增大质量比可以显著提高极限环振荡的抑制效果和临界速度。此外,NES的阻尼比越小,其颤振系统的极限环振荡抑制效果越好。展开更多
鱼骨柔性翼(Fish bone active camber,FishBAC)是一种依靠结构变形实现机翼弯度变化的结构形式,相较于传统的离散式控制面和增升装置,可以在实现机翼弯度变化的同时保持气动表面的连续与光滑。然而,其依靠结构弹性变形实现机翼变弯度的...鱼骨柔性翼(Fish bone active camber,FishBAC)是一种依靠结构变形实现机翼弯度变化的结构形式,相较于传统的离散式控制面和增升装置,可以在实现机翼弯度变化的同时保持气动表面的连续与光滑。然而,其依靠结构弹性变形实现机翼变弯度的基本特征可能引发潜在气动弹性问题。针对柔性翼潜在的气动弹性问题,本文从结构特性和气动弹性特性两方面进行了研究。在结构特性方面,基于欧拉梁理论和逐段刚化法建立等效结构模型,经有限元验证发现简化模型在计算非均质梁结构保持精度的同时提高了计算效率。在气动弹性特性分析方面,基于等效刚柔耦合翼型模型和非定常气动理论完成了气动弹性特性分析。结果表明,FishBAC建模时需考虑结构柔性,忽略结构柔性会对气动弹性特性的预测存在一定偏差。在驱动力矩低于1.5 N·m时,本文简化的等效结构模型可较好地预测考虑静气动弹性特性的机翼结构形变。使用本文提出的翼型模型考虑结构存在刚柔耦合特性,并预测柔性段所发生的弯度颤振,简化模型与MSC Nastran相比在颤振速度预测上保持了一致性。展开更多
文摘In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of this, an approach to analysing flutter characteristics which combines the merit of graphic and analytic methods, is presented. Also an optimal cost function with clear physical meaning which can overcome some inherent drawbacks of linear quadratic technique, is developed. The paper has shown a numerical example of an elastic wing, in which some comparisons between the approach and 'V-G' method for calculating the critical point (Vf,wf ) are carried out as well.
文摘Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.
文摘The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)portion.Additionally,direct integrated CFD and computational structural dynamics(CSD)technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form.A reduced-order model(ROM)based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure.The closed-loop control systems designed by the sliding mode control(SMC)and linear quadratic Gaussian(LQG)control were constructed with ROM/CSD to suppress the AGARD 445.6wing flutter.The detailed implementation of the two control approaches is presented,and the flutter suppression effectiveness is discussed and compared.The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.
文摘针对间隙非线性机翼颤振系统的亚临界问题,引入了非线性能量阱(nonlinear energy sink,NES)技术来提高系统发生极限环振荡的临界速度。建立了具有NES控制的间隙非线性机翼颤振系统动力学模型,并分析了质量比、频率比、阻尼比、相对位置等NES参数对颤振系统极限环振荡的抑制效果,以及NES参数对颤振系统极限环振荡临界速度的影响规律。结果表明,阻尼比越大,可以在越小的自振频率比情况下使系统进入稳定区,但需要更苛刻的NES位置要求,即越靠近机翼前缘;而阻尼比越小,则使颤振系统极限环振荡响应进入稳定区所需的NES质量越小。在NES位置靠近机翼前缘时,增大自振频率比会使极限环振荡抑制效果有明显的提升,而增大质量比可以显著提高极限环振荡的抑制效果和临界速度。此外,NES的阻尼比越小,其颤振系统的极限环振荡抑制效果越好。
文摘鱼骨柔性翼(Fish bone active camber,FishBAC)是一种依靠结构变形实现机翼弯度变化的结构形式,相较于传统的离散式控制面和增升装置,可以在实现机翼弯度变化的同时保持气动表面的连续与光滑。然而,其依靠结构弹性变形实现机翼变弯度的基本特征可能引发潜在气动弹性问题。针对柔性翼潜在的气动弹性问题,本文从结构特性和气动弹性特性两方面进行了研究。在结构特性方面,基于欧拉梁理论和逐段刚化法建立等效结构模型,经有限元验证发现简化模型在计算非均质梁结构保持精度的同时提高了计算效率。在气动弹性特性分析方面,基于等效刚柔耦合翼型模型和非定常气动理论完成了气动弹性特性分析。结果表明,FishBAC建模时需考虑结构柔性,忽略结构柔性会对气动弹性特性的预测存在一定偏差。在驱动力矩低于1.5 N·m时,本文简化的等效结构模型可较好地预测考虑静气动弹性特性的机翼结构形变。使用本文提出的翼型模型考虑结构存在刚柔耦合特性,并预测柔性段所发生的弯度颤振,简化模型与MSC Nastran相比在颤振速度预测上保持了一致性。