期刊文献+
共找到488篇文章
< 1 2 25 >
每页显示 20 50 100
A computational study of the wing-wing and wing-body interactions of a model insect 被引量:17
1
作者 Xin Yu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期421-431,共11页
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grid... The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions. 展开更多
关键词 INSECT AERODYNAMICS wing/winginteraction wing/body interaction
下载PDF
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings 被引量:13
2
作者 Guoyu Luo Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第6期531-541,共11页
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ... The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients. 展开更多
关键词 insect flight - Sweeping wing Unsteady aerodynamics wing corrugation Planform
下载PDF
Effects of wing deformation on aerodynamic performance of a revolving insect wing 被引量:5
3
作者 Ryusuke Noda Toshiyuki Nakata Hao Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期819-827,共9页
Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)... Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)problems.To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime,we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model.To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold:acceleration and steady rotation,which are based on hovering wing kinematics of hawkmoth,Manduca sexta.Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase,which results in a significant wing deformation.While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices(LEVs),the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration.During the phase of steady rotation,the flexible wing model generates more ver-tical force at higher angles of attack(40°–60°)but less horizontal force than those of a rigid wing model.This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip,which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force.Moreover,our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics:the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation,which is mainly induced by inertial force in acceleration but by aerodynamic forces in steady rotation. 展开更多
关键词 Insect flight Flexible wing Revolving wing Fluid-structure interaction
下载PDF
Aeroelastic Analysis and Optimization of High-aspect-ratio Composite Forward-swept Wings 被引量:9
4
作者 万志强 颜虹 +1 位作者 刘德广 杨超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期317-325,共9页
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit... In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed. 展开更多
关键词 aeroeiasticity structural optimization high-aspect-ratio wing forward-swept wing COMPOSITE
下载PDF
Wing patterning genes of Nilaparvata lugens identification by transcriptome analysis, and their differential expression profile in wing pads between brachypterous and macropterous morphs 被引量:1
5
作者 LI Kai-yin HU Ding-bang +5 位作者 LIU Fang-zhou LONG Man LIU Si-yi ZHAO Jing HE Yue-ping HUA Hong-xia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第9期1796-1807,共12页
The brown planthopper, Nilaparvata lugens is an economically important pest on rice plants. This species produces macropterous and brachypterous morphs in response to environmental cues, which makes it very dififcult ... The brown planthopper, Nilaparvata lugens is an economically important pest on rice plants. This species produces macropterous and brachypterous morphs in response to environmental cues, which makes it very dififcult to control. The molecular basis of wing patterning in N. lugens is stil unknown. It is necessary to identify wing patterning genes of N. lugens, and also to clarify the expression differences of wing patterning genes between macropterous and brachypter-ous morphs. High-throughput deep sequencing of transcriptome of N. lugens wing pad yielded 116 744 580 raw reads and 113 042 700 clean reads. Al the reads were assembled into 55 963 unigenes with an average length of 804 bp. With the E-value cut-off of 1.0E–5,18 359 and 2 883 unigens had hits in NCBI-NR (NCBI non-redundant protein sequences) and NCBI-NT (NCBI nucleotide sequences) databases, respectively. A total of 16 502 unigenes were assigned to GO (gene ontology) classiifcation, 9 709 ungenes were grouped into 26 COG (cluster of orthologous groups of proteins) classiifcations, and 6 724 unigenes were assigned to different KEGG (Kyoto encyclopedia of genes and genomes) path-ways. In total, 56 unigenes which are homologous to wing patterning genes of Drosophila melanogaster or Tribolium castaneum were identiifed. Out of the 56 unigenes, 24 unigenes were selected, and their expression levels across the ifve nymphal stages between macropterous strain and brachypterous strain were examined by qRT-PCR. Two-way ANOVA analysis showed that development stage had signiifcant effects on the expression level of al the 24 genes (P<0.05). The expression levels of 8 genes (Nlen, Nlhh, Nlsal, NlAbd-A, Nlwg, Nlvg, Nlexd and NlUbx) were signiifcantly affected by wing morph. This is the ifrst transcriptome analysis of wing pads of hemimetabolous insect, N. lugens. The identiifed wing patterning genes would be useful resource for future exploration of molecular basis of wing development. The 8 differential y expressed wing patterning genes between macropterous strain and brachypterous strain would contribute to explain molecular mechanism of wing-morph differentiation in N. lugens. 展开更多
关键词 Nilaparvata lugens wing pad TRANSCRIPTOME wing patterning genes
下载PDF
Modeling and Motion Simulation for A Flying-Wing Underwater Glider with A Symmetrical Airfoil 被引量:3
6
作者 ZHAO Liang WANG Peng +1 位作者 SUN Chun-ya SONG Bao-wei 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期322-332,共11页
The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the f... The flying-wing underwater glider (UG), shaped as a blended wing body, is a new type of underwater vehicle and still requires further research. The shape layout and the configuration of the internal actuators of the flying-wing UG are different from those of "legacy gliders" which have revolving bodies, and these two factors strongly affect the dynamic performance of the vehicle. Considering these differences, we propose a new configuration of the internal actuators for the flying-wing UG and treat the flying-wing UG as a multi-body system when establishing its dynamic model. In this paper, a detailed dynamic model is presented using the Newton-Euler method for the flying-wing UG. Based on the full dynamic model, the effect of the internal actuators on the steady gliding motion of vehicle is studied theoretically, and the relationship between the state parameters of the steady gliding motion and the controlled variables is obtained by solving a set of equilibrium equations. Finally, the behaviors of two classical motion modes of the glider are analyzed based on the simulation. The simulation results demonstrate that the motion performance of the proposed flying-wing UG is satisfactory. 展开更多
关键词 flying-wing underwater GLIDER blended-wing-body dynamic MODELING MOTION simulation STEADY MOTION
下载PDF
Mimicking a Superhydrophobic Insect Wing by Argon and Oxygen Ion Beam Treatment on Polytetrafluoroethylene Film 被引量:3
7
作者 Youngjong Lee Yonghoon Yoo +5 位作者 Jihoon Kim Sriyulianti Widhiarini Baeho Park Hoon Cheol Park Kwang Joon Yoon Doyoung Byun 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期365-370,共6页
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves and insect wings,which enhance the hydrophobicity of the natural surfaces and play a role of self-cleaning.We presented the ... Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves and insect wings,which enhance the hydrophobicity of the natural surfaces and play a role of self-cleaning.We presented the fabrication technology of a superhydrophobic surface using high energy ion beam.Artificial insect wings that mimic the morphology and the superhydrophobocity of cicada's wings were successfully fabricated using argon and oxygen ion beam treatment on a polytetrafluoroethylene (PTFE)film.The wing structures were supported by carbon/epoxy fibers as artificial flexible veins that were bonded through an autoclave process.The morphology of the fabricated surface bears a strong resemblance to the wing surface of a cicada,with contact angles greater than 160°,which could be sustained for more than two months. 展开更多
关键词 superhydrophobic insect wing mimicry of the wing ion beam treatment artificial flapper dynamic contact angle
下载PDF
Kinematic and Aerodynamic Modelling of Bi- and Quad-Wing Flapping Wing Micro-Air-Vehicle 被引量:1
8
作者 Harijono Djojodihardjo Alif Syamim S. Ramli +1 位作者 Surjatin Wiriadidjaja Azmin Shakrine Mohd Rafie 《Advances in Aerospace Science and Technology》 2016年第3期83-101,共19页
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc... A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work. 展开更多
关键词 Bi-wing Ornithopter Flapping wing Aerodynamics Flapping wing Ornithopter Micro Air Vehicle Quad-wing Ornithopter
下载PDF
Improvement of Artificial Foldable Wing Models by Mimicking the Unfolding/Folding Mechanism of a Beetle Hind Wing 被引量:7
9
作者 Azhar Muhammad Quoc Viet Nguyen +3 位作者 Hoon Cheol Park Do Y.Hwang Doyoung Byun Nam Seo Goo 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期134-141,共8页
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ... In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion. 展开更多
关键词 hind wing UNFOLDING FOLDING shape memory alloy folding ratio artificial wing
下载PDF
Nanoindentation Mechanical Properties and Structural Biomimetic Models of Three Species of Insects Wings
10
作者 佟金 CHANG Zhiyong +5 位作者 YANG Xiao ZHANG Jin LIU Xianping CHETWYND Derek G CHEN Donghui 孙霁宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期831-839,共9页
Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying princi... Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials. 展开更多
关键词 biomimetics membranous wing insect wing models finite element method
下载PDF
Measurement on Camber Deformation of Wings of Free-flying Dragonflies and Beating-flying Dragonflies
11
作者 Deqiang Song 1,2, Lijiang Zeng 1 1. State Key Laboratory of Precision Measurement Technology and Instruments,Tsinghua University, Beijing, 100084, P.R. China 2. 9500 Gilman Dr. 0409, University of California, San Diego, 92093, CA, USA 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第1期41-45,共5页
The knowledge of wing orientation and deformation during flapping flight is necessary for a complete aerodynamic analysis, but to date those kinematic features have not been simultaneously quantified for free-flying i... The knowledge of wing orientation and deformation during flapping flight is necessary for a complete aerodynamic analysis, but to date those kinematic features have not been simultaneously quantified for free-flying insects. A projected comb-fringe (PCF) method has been developed for measuring spanwise camber changes on free-flying dragonflies and on beating-flying dragonflies through the course of a wingbeat, which bases on projecting a fringe pattern over the whole measurement area and then measuring the wing deformation from the distorted fringe pattern. Experimental results demonstrate substantial camber changes both along the wingspan and through the course of a wingbeat. The ratio of camber deformation to chord length for hind wing is up to 0.11 at 75% spanwise with a flapping angle of -0.66 degree for a free-flying dragonfly. 展开更多
关键词 free flight fringe pattern projection insect flight wing orientation wing camber
下载PDF
OPTIMAL DESIGN AND AERODYNAMIC CALCULATION OF WING CONFIGURATION OF CIVIL AIRCRAFT
12
作者 Wang Liangyi(Department of Aerddynamics,NUAA 29 Yudao Street,Nanjing 210016,P.R.China) 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1994年第2期165-169,共5页
An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of p... An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of penalty in optimal design of wing configuration has been solved well. The present method for the aerodynamic calculation is the combination of both the nonlinear panel method and the suction analogy method of vortexlift spanwise distribution on large swept wing-tip. The calculation results are in good agreement with experimental data. According to the computation and experiment,the mechanism of the increased lift and reduced drag about the sheared wing-tip wing has been analyzed, and some opinions of interest are proposed. 展开更多
关键词 optimum DESIGN aerodynamic COMPUTATIONS CIVIL AIRCRAFT sheared wing-tip wing PENALTY function
下载PDF
Stress Analysis of Membrane Flapping-Wing Aerial Vehicle Based on Different Material Models
13
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1023-1030,共8页
Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress... Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles. 展开更多
关键词 Flapping-wing AERIAL VEHICLE MEMBRANE wing STRESS Analysis
下载PDF
Longitudinal Aerodynamic Characteristics of the Novel Wing-Body
14
作者 MOHAMED Kaka 《Computer Aided Drafting,Design and Manufacturing》 2007年第2期28-36,共9页
The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Ae... The Longitudinal Aerodynamic Characteristics (LACs)of a wing-body without tail unit is computed and tested in wind tunnel. The empirical formulas of Datcom and some other authors are applied to estimate the basic Aerodynamic Coefficients. Two wing options are covered as analysis space, namely, the double-delta wing and streak wing, getting two analysis groups respectively. Good agreement between the computation results and the wind tunnel tests shows that the methodology presented is a simple and reliable way to calculate this kind of novel wing-body configurations. 展开更多
关键词 longitudinal aerodynamic characteristics double-delta wing streak wing wingbody
下载PDF
集体记忆与历史重述——左翼作家的“左翼文学”回忆 被引量:1
15
作者 李跃力 《广州大学学报(社会科学版)》 CAS CSSCI 2024年第1期129-139,共11页
左翼作家对“左翼文学”的回忆蔚为大观,构成现代中国不容忽略而又意味深远的文化景观。其重构历史的强烈意图,与当下政治生态、社会现实之间的深层互动,使其足以作为实践中国现代文学研究“记忆的转向”的典型样本。左翼作家通过个人... 左翼作家对“左翼文学”的回忆蔚为大观,构成现代中国不容忽略而又意味深远的文化景观。其重构历史的强烈意图,与当下政治生态、社会现实之间的深层互动,使其足以作为实践中国现代文学研究“记忆的转向”的典型样本。左翼作家通过个人史、“左联”史和左翼文学史的叙述,完成形象重塑、身份认同、重构历史、接续传统等多种意图,充分体现话语生产与意识形态之间的紧密关系。“左翼文学”回忆对社会框架十分依赖,呈现出明显的“集体记忆”特征,打上了社会主导思想和主流意识形态的深深印记,但“个体记忆”又常常逸出“社会框架”,对集体记忆构成冲击与反抗,使得左翼作家的回忆呈现出微妙的张力。然而无论如何,左翼作家的“左翼文学”回忆都在很大程度上重构了中国现代文学史,深度影响了我们对左翼文学的认知。 展开更多
关键词 左翼文学 左翼作家 集体记忆 历史重述
下载PDF
可变弯度翼身融合布局气动特性分析与设计 被引量:1
16
作者 王雨桐 蓝庆生 +2 位作者 周铸 杨体浩 宋超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1292-1307,共16页
变弯度机翼在提高常规布局客机气动特性方面有较大的潜力,但也会引起全机俯仰力矩变化,考虑翼身融合布局飞行器力臂短、配平阻力较大的特点,研究变弯度技术在翼身融合布局飞行器上的减阻收益与配平惩罚。从工程实际出发,采用基于舵面偏... 变弯度机翼在提高常规布局客机气动特性方面有较大的潜力,但也会引起全机俯仰力矩变化,考虑翼身融合布局飞行器力臂短、配平阻力较大的特点,研究变弯度技术在翼身融合布局飞行器上的减阻收益与配平惩罚。从工程实际出发,采用基于舵面偏转的方式实现后缘变弯度并对比分析不同展向位置处舵面的配平能力;然后利用全局优化方法开展变弯度气动减阻优化设计;最后对变弯度设计空间进行探索。结果表明:随着升力系数的改变,产生配平阻力最小的舵面位置也会发生变化。当不考虑俯仰力矩配平约束时,采用变弯度技术至多可以获得4.62%的减阻收益;在考虑俯仰力矩配平约束后,相比于采用中央体后缘舵面配平,采用变弯度技术至少能够减小2.4×10^(-4)的配平损失。不同升力系数下,变弯度的舵面偏转组合方式存在明显差异,小升力系数下,多个舵面负偏的变弯度组合有利于减阻并增加抬头力矩;而大升力系数下则是通过多个舵面正偏的组合实现减阻,但会导致低头力矩增加。基于多舵面组合偏转的变弯度减阻收益与力矩惩罚评估,能为工程上设计可变弯度翼身融合布局飞行器提供参考。 展开更多
关键词 翼身融合 后缘变弯度 气动特性 优化设计 代理模型
下载PDF
平直翼飞翼布局飞机的操稳特性
17
作者 李志锴 魏莎 +1 位作者 丁虎 陈立群 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期925-937,共13页
飞翼布局飞机气动效率高,常被太阳能飞机所采用,但操稳特性较差.平直翼飞翼布局飞机具有与主流后掠飞翼布局飞机不同的气动特性.使用涡格法计算了轻小型平直翼飞翼布局无人机的气动力系数与气动导数,分析了某验证机的俯仰静稳定性及不... 飞翼布局飞机气动效率高,常被太阳能飞机所采用,但操稳特性较差.平直翼飞翼布局飞机具有与主流后掠飞翼布局飞机不同的气动特性.使用涡格法计算了轻小型平直翼飞翼布局无人机的气动力系数与气动导数,分析了某验证机的俯仰静稳定性及不同迎角、爬升角下的纵向与横航向稳定性,讨论了重心位置低于机翼平面对其稳定性的影响,并制作航空模型试飞.研究发现,平直翼飞翼布局飞机的纵向稳定性与常规布局飞机不同,可以在无增稳条件下维持横航向稳定,荷兰滚倾向弱.重心位置降低可以改变配平迎角,使其在正迎角下俯仰更稳定,但会使其在负迎角或大爬升角下的俯仰稳定性恶化.飞机在飞行中表现出多种特殊行为,需要进一步研究. 展开更多
关键词 平直翼 飞翼布局 稳定性 操纵特性 重心位置
下载PDF
3种不同机翼构型的地效翼气动特性优化实验研究
18
作者 邓博闻 代钦 《空军工程大学学报》 CSCD 北大核心 2024年第5期60-68,共9页
机翼的几何构型是影响地效飞行器空气动力学特性的重要参数,为改善地效飞行器升力、阻力特性,采用拖曳水槽实验测量了下反前掠翼和具有仿生凹凸前缘下反前掠翼的升力、阻力特性和尾流速度场,并在分析翼尖涡流场结构的基础上从展向流动... 机翼的几何构型是影响地效飞行器空气动力学特性的重要参数,为改善地效飞行器升力、阻力特性,采用拖曳水槽实验测量了下反前掠翼和具有仿生凹凸前缘下反前掠翼的升力、阻力特性和尾流速度场,并在分析翼尖涡流场结构的基础上从展向流动的角度讨论了机翼升力阻力变化的机理。结果表明,在地效区内,下反前掠结构可以有效改善机翼绕流特性,抑制翼尖涡的形成和发展、增大了涡心距,起到增升减阻的效果,并且机翼越靠近地面,增升减阻的效果越明显。在此基础上,凹凸前缘可以进一步优化机翼绕流特性,降低翼尖涡强度,使诱导阻力减小。在小间隙比、小攻角工况中,带凹凸前缘的下反前掠结构的仿生翼具备最优的航行经济性。上述研究可为改善地效翼的飞行性能并促进地效翼设计理论的发展提供参考。 展开更多
关键词 地面效应 平直翼 下反前掠翼 仿生翼 升力和阻力 PIV实验
下载PDF
升力翼高速列车前后翼干扰特性研究
19
作者 张宝珍 熊小慧 +1 位作者 汪欣然 耿嘉旭 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1806-1821,共16页
在高速列车车顶安装升力翼旨在通过提高列车气动升力减小轮轨作用力,是一种新型等效减重的手段。升力翼安装到高速列车顶部后,其工作环境与航空相比有很大不同,升力翼与升力翼之间存在相互干扰。以三车编组1꞉10缩比某型CRH高速列车模型... 在高速列车车顶安装升力翼旨在通过提高列车气动升力减小轮轨作用力,是一种新型等效减重的手段。升力翼安装到高速列车顶部后,其工作环境与航空相比有很大不同,升力翼与升力翼之间存在相互干扰。以三车编组1꞉10缩比某型CRH高速列车模型为研究对象,采用改进型延迟分离涡模拟(IDDES)方法,分别针对不同高度和不同间距布局的两翼高速列车进行数值模拟分析,探讨前后升力翼布局对升翼力列车气动力和周围流场结构的影响规律及其作用机理。研究结果表明:对于不同间距布局,当后翼距离前翼过近时,前翼翼尖涡流的干扰导致流速加大,压差变小,最终使气动升力有所降低;而当前后翼间距过大时,即后翼远离前翼尾流干扰范围,后翼由于无法受到前翼下洗气流的正向作用,使得升力减小。对于不同高度布局,错落式布局下前翼的尾流涡旋由于高度差的原因远离后翼,相较于等高式布局,错落式布局中前翼尾流对后翼造成的干扰程度较小。错落式布局的列车整体升力性能优于等高式布局的列车整体升力性能,且前低后高式布局下,列车的增升效果最好。综合不同间距和不同高度布局的结果可知,对于两翼高速列车,翼间距为0.90H时前低后高式布局的整车气动性能最优,尤其是列车升力可以得到显著提升。 展开更多
关键词 高速列车 升力翼 翼间干扰特性 计算流体力学
下载PDF
一种新型组合翼地面效应气动特性数值研究
20
作者 亓晓晨 张春元 王培毅 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期107-113,共7页
机翼构型是影响地效飞行器性能的重要参数,提出了一种新构型的组合翼,使用计算流体力学方法(CFD)并选择Realizable k-ε湍流模型来模拟机翼表面周围区域的流动结构。通过将具有NACA6409翼型的矩形翼的气动特性计算结果与实验结果进行对... 机翼构型是影响地效飞行器性能的重要参数,提出了一种新构型的组合翼,使用计算流体力学方法(CFD)并选择Realizable k-ε湍流模型来模拟机翼表面周围区域的流动结构。通过将具有NACA6409翼型的矩形翼的气动特性计算结果与实验结果进行对比,验证了数值模拟方法的准确性。对组合翼在地面效应下的气动特性进行数值模拟,研究了攻角和离地高度对气动特性的影响,并与矩形翼进行了对比分析。结果表明,组合翼的气动性能相比矩形翼有一定的提升,主要集中在阻力的降低与升阻比的提高上,且在低离地高度和大攻角下提升明显;组合翼具有更大的湍流动能,然而吸力效应小于矩形翼,尾缘气流分离的程度更大;该研究为高性能地效飞行器机翼构型设计提供了参考依据。 展开更多
关键词 地面效应 数值模拟 机翼构型 组合翼 气动特性
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部