期刊文献+
共找到789篇文章
< 1 2 40 >
每页显示 20 50 100
Recent progress of hybrid cathode interface layer for organic solar cells
1
作者 Jianru Wang Dan Zhou +9 位作者 Zhentian Xu Yujie Pu Senmei Lan Fang Wang Feiyan Wu Bin Hu Yongfen Tong Ruizhi Lv Honglin Chu Lie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期383-406,共24页
Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junctio... Organic solar cells(OSCs)have gained conspicuous progress during the past few decades due to the development of materials and upgrading of the device structure.The power conversion efficiency(PCE)of the single-junction device had surpassed 19%.The cathode interface layer(CIL),by optimizing the connection between the active layer and the cathode electrode,has become a momentous part to strengthen the performances of the OSCs.Simultaneously,CIL is also indispensable to illustrating the working mechanism of OSCs and enhancing the stability of the OSCs.In this essay,hybrid CILs in OSCs have been summarized.Firstly,the advancement and operating mechanism of OSCs,and the effects and relevant design rules of CIL are briefly concluded;secondly,the significant influence of CIL on enhancing the stability and PCE of OSCs is presented;thirdly,the characteristics of organic hybrid CIL and organic-inorganic hybrid CIL are introduced.Finally,the conclusion and outlook of CIL are summarized. 展开更多
关键词 Organic solar cells Theoperation mechanism Organic hybrid cathode interface layer Organic-inorganic hybrid CIL
下载PDF
Exergo-Environmental Study of a Recent Organic Solar Hybrid Heat Pump
2
作者 Rabeb Toujani Nahla Bouaziz 《Fluid Dynamics & Materials Processing》 EI 2023年第4期991-1001,共11页
A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Pote... A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Potential.The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy.It is shown that Exergy Analysis itself is a valuable tool in energy integration.Within the imposed framework of minimizing total annual costs,entropy analysis can be instrumental in determining the optimal plant concept,optimizing energy conversion and use,and improving profitability.The present results are discussed under the optimistic hope that they may help to define new energy and environmental policies. 展开更多
关键词 Impact environmental exergy analysis CO_(2)emissions solar hybrid heat pump
下载PDF
Solar cell-based hybrid energy harvesters towards sustainability
3
作者 Tianxiao Xiao Suo Tu +3 位作者 Suzhe Liang Renjun Guo Ting Tian Peter Müller-Buschbaum 《Opto-Electronic Science》 2023年第6期1-21,共21页
Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from... Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from small-scale wearable electronics to large-scale energy powering.However,the utility of solar cells in providing a stable power supply for vari-ous electrical appliances in practical applications is restricted by weather conditions.To address this issue,researchers have made many efforts to integrate solar cells with other types of energy harvesters,thus developing hybrid energy har-vesters(HEHs),which can harvest energy from the ambient environment via different working mechanisms.In this re-view,four categories of energy harvesters including solar cells,triboelectric nanogenerators(TENGs),piezoelectric nanogenerators(PENGs),and thermoelectric generators(TEGs)are introduced.In addition,we systematically summar-ize the recent progress in solar cell-based hybrid energy harvesters(SCHEHs)with a focus on their structure designs and the corresponding applications.Three hybridization designs through unique combinations of TENG,PENG,and TEG with solar cells are elaborated in detail.Finally,the main challenges and perspectives for the future development of SCHEHs are discussed. 展开更多
关键词 solar cell hybrid energy harvesters triboelectric nanogenerators piezoelectric nanogenerators thermoelectric generators
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
4
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
5
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
Economic feasibility of large-scale hydro–solar hybrid power including long distance transmission 被引量:6
6
作者 Zhenchen Deng Jinyu Xiao +3 位作者 Shikun Zhang Yuetao Xie Yue Rong Yuanbing Zhou 《Global Energy Interconnection》 2019年第4期290-299,共10页
Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that c... Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa. 展开更多
关键词 HYDROPOWER solar POWER Multi-energy hybrid system Economic analysis UHVDC transmission Hydro–solar hybrid POWER
下载PDF
Semiconductor,molecular and hybrid systems for photoelectrochemical solar fuel production 被引量:2
7
作者 Rosalba Passalacqua Siglinda Perathoner Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期219-240,共22页
The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however... The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however, hybrid strategies, proposed recently, have also been included. The most promising efforts are considered, highlighting key aspects and emerging critical issues. Special attention is paid to aspects such as electrode architecture, device design, and main differences in the scientific vision and challenges to directly produce solar fuels. This overview could be useful to orientate the readers in the wide panorama of research activities concerning water splitting, natural and artificial photosynthesis, and solar fuel production through the identification of common aspects, specialties and potentialities of the many initiatives and approaches that are developing worldwide in this field with the final aim to meet world energy demand. 展开更多
关键词 solar fuels production CO2 reduction Artificial photosynthesis PEC cells Semiconductor systems Molecular systems hybrid nanobiocatalytic systems
下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:3
8
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
下载PDF
Experimental Study on a Modified Wind-Solar Hybrid System 被引量:1
9
作者 Yiping Wang Chunli Ni +3 位作者 Yeqiang Shi Qunwu Huang Yunfa Hu Yong Cui 《Transactions of Tianjin University》 EI CAS 2018年第1期59-65,共7页
Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind pow... Wind-solar hybrid systems are employed extensively due to certain advantages. However, two problems exist in their application: the PV modules operate at high temperatures, particularly during summer, and low wind power cannot be utilized. To solve these two problems, a novel hybrid system is designed based on PV/thermal systems, in which PV modules are cooled with fans driven by a wind turbine. This paper studies the practicability of the novel hybrid system. First, the electrical performance of the wind turbine is compared using a fan and battery load,respectively. Second, different types and numbers of fans are tested to obtain the largest air volume. Third, the height of the air duct on the back of the PV module is optimized and the cooling effect is studied. Results show that a 24 V DC fan is more appropriate for the novel system than a 12 V DC fan, as it provides a greater air volume, and with a switch wind speed of 3.0 m/s the power of PV module shows a maximum increase of 8.0%. 展开更多
关键词 Wind–solar hybrid SYSTEM PV COOLING Low WIND SPEED WIND energy
下载PDF
Simple hybrid dithiafulvenes-triphenylamine systems as dopant-free hole-transporting materials for efficient perovskite solar cells 被引量:2
10
作者 Zhongquan Wan Yunpeng Zhang +5 位作者 Jinyu Yang Jianxing Xia Fangyan Lin Xiaojun Yao Junsheng Luo Chunyang Jia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期293-299,共7页
Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite sol... Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%). 展开更多
关键词 Perovskite solar cells Hole-transporting materials hybrid conjugated systems Triphenylamine 1 4-Dithiafulvenes
下载PDF
Solar radiation-use characteristics of indica/japonica hybrid rice (Oryza sativa L.) in the late season in southeast China 被引量:3
11
作者 Min Yin Shaowen Liu +5 位作者 Xi Zheng Guang Chu Chunmei Xu Xiufu Zhang Dangying Wang Song Chen 《The Crop Journal》 SCIE CSCD 2021年第2期427-439,共13页
New indica and japonica hybrid rice cultivars,such as the Yongyou series,provide farmers with very high yield potential.However,information on their canopy light capture and solar radiation use efficiency in the late ... New indica and japonica hybrid rice cultivars,such as the Yongyou series,provide farmers with very high yield potential.However,information on their canopy light capture and solar radiation use efficiency in the late season is limited.Field experiments were performed to compare the radiation-use parameters of four rice types:indica rice(IR),inbred japonica rice(IJR),hybrid japonica rice(HJR),and hybrid indica/japonica rice(HIJR),from 2016 to 2018 during the late season in Hangzhou,China.The grain yield,aboveground biomass,intercepted solar radiation(SI),and radiation-use efficiency(RUE)of the HIJR were on average respectively 13.4%–53.4%,14.3%–30.6%,7.6%–21.4%,and 8.2%–14.9%higher than those of the HJR,IJR,and IR.The leaf area index(LAI)of the HIJR was 18.2%–57.0%greater than that of the IJR and HJR at four growth stages,resulting in respectively 17.8%–38.5%and 10.7%–42.8%greater canopy light interception rates(LIR)and amount of intercepted solar radiation during the vegetative stage.The prolonged grain-filling stage also led to respectively 33.9%–52.6%and 30.5%–51.4%increases in amounts of incident and intercepted radiation for the HIJR relative to the IR during grain filling.These results indicate that the SI superiority of the HIJR was caused by canopy closure as rapid as that of the IR during the vegetative stage(greater LAI and canopy LIR during the growing season)and a grain-filling stage as long as that of the HJR.For grain-filling stage,differences in leaf Pn between HIJR,IR,and IJR were not significant,suggesting that the greater RUE of the HIJR(12.7%–52.8%higher)than that of the other rice types resulted from improved canopy architecture after flowering(FL).Principal components analysis(PCA)revealed that the superiority of the HIJR in terms of solar radiation use resulted from the greater canopy light capture capability of IR and the prolonged growth period(especially during grain filling)of japonica rice in the late growing season. 展开更多
关键词 indica/japonica hybrid rice solar radiation use Canopy light capture Leaf area index
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
12
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization OFF-GRID Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) solar Photovoltaic (PV) WIND Battery hybrid Genetic Algorithm (GA)
下载PDF
Hybrid Power Generation by Using Solar and Wind Energy: Case Study 被引量:1
13
作者 Peter Jenkins Monaem Elmnifi +1 位作者 Abdalfadel Younis Alzaroog Emhamed 《World Journal of Mechanics》 2019年第4期81-93,共13页
Energy is critical to the economic growth and social development of any country. Indigenous energy resources need to be developed to the optimum level to minimize dependence on imported fuels, subject to resolving eco... Energy is critical to the economic growth and social development of any country. Indigenous energy resources need to be developed to the optimum level to minimize dependence on imported fuels, subject to resolving economic, environmental and social constraints. This led to an increase in research and development as well as investments in the renewable energy industry in search of ways to meet the energy demand and to reduce the dependency on fossil fuels. Wind and solar energy are becoming popular owing to the abundance, availability and ease of harnessing the energy for electrical power generation. This paper focuses on an integrated hybrid renewable energy system consisting of wind and solar energies. Many parts of Libya have the potential for the development of economic power generation, so maps locations were used to identify where both wind and solar potentials are high. The focal point of this paper is to describe and evaluate a wind-solar hybrid power generation system for a selected location. Grid-tied power generation systems make use of solar PV or wind turbines to produce electricity and supply the load by connecting to the grid. In this study, the HOMER (Hybrid Optimization Model for Electric Renewable) computer modeling software was used to model the power system, its physical behavior and its life cycle cost. Computer modeling software was used to model the power system, its physical behavior and its life cycle cost. The hybrid power system was designed for a building at the University of Al-Marj (MARJU). Through the use of simulations, the installation of ten 100-kW wind turbines and 150-KW solar PV was evaluated. 展开更多
关键词 hybrid System solar and WIND COMBINATION RENEWABLE ENERGY Libya
下载PDF
Figure of Merit Analysis of a Hybrid Solar-geothermal Power Plant 被引量:1
14
作者 Cheng Zhou Elham Doroodchi Behdad Moghtaderi 《Engineering(科研)》 2013年第1期26-31,共6页
Figure of merit analysis is a general methodology used to evaluate whether a hybrid power plant could produce more power than two stand-alone power plants. In this paper, the assessment methodology using figure of mer... Figure of merit analysis is a general methodology used to evaluate whether a hybrid power plant could produce more power than two stand-alone power plants. In this paper, the assessment methodology using figure of merit analysis was re-examined for a hybrid solar-geothermal power plant. A new definition of the figure of merit was introduced specifically for a solar boosted geothermal plant to include both the technical and economic factors. The new definition was then applied in a case study of a hypothetical demonstration hybrid solar-geothermal power plant in Australia. The power plant was considered to have a typical net power output of 2.2 MW with a solar energy fraction of 27%. The analysis was performed to compare the power output and capital cost of the hybrid plant with the state-of-the-art (SoA) and existing stand-alone solar and geothermal plants. Based on the new definition, the hybrid plant was found to generally outperform the two existing stand-alone plants. Moreover, at an ambient temperature of 5 °C, the hybrid plant was found to outperform the SoA stand-alone plants when the geothermal temperature was greater than 150 °C. For geothermal temperature of 180 °C on the other hand, the hybrid plant outperformed the SoA stand-alone plants at ambient temperatures lower than 33 °C. 展开更多
关键词 FIGURE of MERIT hybrid RENEWABLE energy system solar GEOTHERMAL Power generation
下载PDF
Drying Temperature Effect on Kernel Damage and Viability of Maize Dried in a Solar Biomass Hybrid Dryer 被引量:1
15
作者 Joseph O. Akowuah Dirk Maier +5 位作者 George Opit Sam McNeill Paul Amstrong Carlos Campabadal Kingsly Ambrose George Obeng-Akrofi 《Open Journal of Applied Sciences》 2018年第11期506-517,共12页
Though several maize varieties have been developed and introduced over the years in Ghana, farmers still face challenges of access to quality seed maize. Among the major constraint is lack of proper drying systems to ... Though several maize varieties have been developed and introduced over the years in Ghana, farmers still face challenges of access to quality seed maize. Among the major constraint is lack of proper drying systems to guarantee quality of seed produced. As in most parts of Africa, drying of maize in the open, on bare ground along shoulders of roads is still a common practice in Ghana. In this study, a 5-tonne capacity hybrid solar biomass dryer was developed for drying maize for seed and food/feed in Ghana. Effect of air temperature in the dryer on the physiological quality and germination of maize kernels was investigated. Maize grains were dried in the open sun simulating farmers practice and using the dryer at 4 varying levels (L1, L2, L3 and L4) with corresponding heights (0.6 m, 1.2 m, 1.8 m and 2.4 m, respectively) from the ground. Harvested maize at 22.8% moisture content was dried at the varying levels until reaching the final desired moisture content of 12.8% ± 0.2% (wb). Results showed that, air temperatures in the dryer increased in accordance with height with lowest mean temperature of 44.4&degC ± 4.6&degC recorded at L1 and mean maximum of 52.8&degC ± 5.4&degC at L4. Drying temperatures recorded at L1 - L3 and ambient had no significant effect (p < 0.05) on kernel damage and viability. Drying conditions at L1-L3 were considered optimum (<50&degC) for kernel drying compared to the topmost tray, L4. Kernel stress crack index (multiple and checked) was therefore reduced on average by 14% while kernel germination increased by 33%. This satisfies the dryer’s potential to be used for commercial drying of maize grains for seed production for smallholder farmers in Ghana. 展开更多
关键词 solar BIOMASS hybrid DRYER DRYING Temperature MAIZE Moisture Stress Crack Germination
下载PDF
Hybrid solar cell based on polythiophene and GaN nanoparticles composite
16
作者 冯倩 时鹏 +4 位作者 李宇坤 杜锴 王强 冯庆 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期604-608,共5页
Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and Galium nitride (GaN) nanoparticle bulk heterojunc- tion are fabricated and analyzed. The GaN nanocrystal is synthesized by means of a combination of ... Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and Galium nitride (GaN) nanoparticle bulk heterojunc- tion are fabricated and analyzed. The GaN nanocrystal is synthesized by means of a combination of sol-gel process with high temperature ammoniation using Ga(OCzH5) as a precursor. Their characteristics are determined by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. With the addition of GaN nanoparticle to P3HT, the device performance is greatly enhanced. 展开更多
关键词 gallium nitride nanocrystal hybrid solar cell P3HT
下载PDF
Wind-Solar Hybrid Electrical Power Production to Support National Grid: Case Study - Jordan
17
作者 Ghassan HALASA Johnson A. ASUMADU 《Energy and Power Engineering》 2009年第2期72-80,共9页
The paper presents the next generation of power energy systems using solar- and wind-energy systems for the country of Jordan. Presently with the oil prices are on the rise, the cost of electrical power production is ... The paper presents the next generation of power energy systems using solar- and wind-energy systems for the country of Jordan. Presently with the oil prices are on the rise, the cost of electrical power production is very high. The opportunity of a large wind and solar hybrid power production is being explored. Sights are chosen to produce electricity using the wind in the Mountains in Northern Jordan and the sun in the Eastern Desert. It is found that the cost of windmill farm to produce 100 - 150 MW is US$290 million while solar power station to produce 100 MW costs US$560 million. The electrical power costs US$0.02/kWh for the wind power and US$0.077 for the solar power. The feasibility for using wind and solar energies is now when the price oil reaches US$ 100.00 per barrel. The paper also discusses different power electronics circuits and control methods to link the renewable energy to the national grid. This paper also looks at some of the modern power electronics converters and electrical generators, which have improved significantly solar and wind energy technologies. 展开更多
关键词 solar ENERGY WIND ENERGY hybrid ENERGY system
下载PDF
Green Approach for <i>In-Situ</i>Growth of CdS Nanorods in Low Band Gap Polymer Network for Hybrid Solar Cell Applications
18
作者 Ramil K. Bhardwaj Vishal Bharti +9 位作者 Abhishek Sharma Dibyajyoti Mohanty Vikash Agrawal Nakul Vats Gauri D. Sharma Neeraj Chaudhary Shilpa Jain Jitender Gaur Kamalika Banerjee Suresh Chand 《Advances in Nanoparticles》 2014年第3期106-113,共8页
In-situ growth of CdS nanorods (NRs) has been demonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbony... In-situ growth of CdS nanorods (NRs) has been demonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7). It is a high yielding, green approach as it removes use of volatile and hazardous chemicals such as pyridine as ligand which are conventionally used to synthesize precursors of CdS (NRs). Moreover the solvothermal process is a zero emission process being a close vessel synthesis and hence no material leaching into the atmosphere during the synthesis. The PTB7:CdS nanocomposite has been characterized by SEM, XRD, FTIR, UV-visible spectroscopy techniques. The photoluminescence (PL) spectroscopy study of PTB7 with CdS NRs has shown significant PL quenching by the incorporation of CdS NRs in PTB7;this shows that CdS NRs are efficient electron acceptors with the PTB7. The PTB7:CdS is used as active layer in the fabrication of hybrid solar cells (HSC) as donor-acceptor combination in the bulk heterojunction (BHJ) geometry. The HSCs fabricated using this active layer without any additional supporting fullerene based electron acceptor has given power conversion efficiency of above 1%. 展开更多
关键词 CdS Nanorods PTB7 IN-SITU GROWTH SOLVOTHERMAL hybrid solar Cell
下载PDF
Modeling and Simulation of a Hybrid Energy Storage System for Residential Grid-Tied Solar Microgrid Systems
19
作者 Abdrahamane Traore Allan Taylor +1 位作者 M. A. Zohdy F. Z. Peng 《Journal of Power and Energy Engineering》 2017年第5期28-39,共12页
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit... Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios. 展开更多
关键词 Microgrid solar hybrid ENERGY Storage Systems Grid-Tied RENEWABLE ENERGY System Modeling Batteries
下载PDF
Economic Analysis and Environmental Impacts of a Hybrid PV System in Arid Climate Considering Different Types of Solar Trackers
20
作者 Yahya Z. Alharthi Mahbube K. Siddiki Ghulam M. Chaudhry 《Smart Grid and Renewable Energy》 2018年第10期199-214,共16页
This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA).... This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA). The study considered various technical and economic factors including system net present cost (NPC), levelized cost of energy (LCOE), and PV power generation using energy analysis and microgrid design software “HOMER”. It also presents an overview of the current electricity production and demand in the Kingdom. The weather data used in this study have been collected from the new solar atlas launched by King Abdullah City for Atomic and Renewable Energy (KACARE). The selected solar resource monitoring station for this study is located near to Riyadh city and has an annual average daily total irradiation of 6300 W/m2/day. The study shows that, for stand-alone PV system in the vicinity of Riyadh city, tracking system is economically better than fixed angle system. Among the considered tracking systems, VCA system is the most preferable as it has low NPC and LCOE values with a high return on investment (ROI) as well as low carbon dioxide (CO2) emissions due to a high renewable energy penetration. 展开更多
关键词 RENEWABLE Energy solar Power hybrid PV SYSTEM solar Trackers HOMER SYSTEM Planning
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部