Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic...Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.展开更多
This paper presents a high-speed ground effect vehicle(HS-GEV)used specifically for maritime transportation.Given the limitations of current vessels,including various types of watercraft and high-speed boats,in fulfil...This paper presents a high-speed ground effect vehicle(HS-GEV)used specifically for maritime transportation.Given the limitations of current vessels,including various types of watercraft and high-speed boats,in fulfilling of needs in different maritime transportation scenarios,the HS-GEV emerges as a promising solution to address unmet requirements.To efficiently accomplish maritime transportation missions with quickness and safety,several critical features are emphasized,including short take-off on water,flight maneuverability and flight stability.The key techniques required to achieve these features,as well as recent progress highlights,are introduced.Following and promoting these crucial techniques is also suggested as a future step to improve HS-GEV performance.With its predominant features,the HS-GEV holds immense application value in enhancing a high-speed maritime transportation system that aligns with the evolving needs of the real world.展开更多
Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the grou...Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.展开更多
The near-wake flow of a NACA0012 airfoils mounted above a water surface were experimentally studied in a wind/wave tunnel. The main objective of this study is to investigate the influence of the free surface on the st...The near-wake flow of a NACA0012 airfoils mounted above a water surface were experimentally studied in a wind/wave tunnel. The main objective of this study is to investigate the influence of the free surface on the structure of the airfoil trailing wake. The flow structure was measured with different ride heights between the airfoil and free surface using a Particle Image Velocimetry (PIV) system. The Reynolds number based on the chord length of the airfoil was about 3.5×10^3. For each experimental condition, large amount of instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity and mean vorticity, as well as turbulence statistics. The results show that the flow structures of the airfoil wake varies remarkably with the change in the ride height.展开更多
文摘Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle.
基金supported by the Fundamental Research Funds for the Central Universities[No.ILA 22012]CARDC Fundamental and Frontier Technology Research Found[No.PJD20200210].
文摘This paper presents a high-speed ground effect vehicle(HS-GEV)used specifically for maritime transportation.Given the limitations of current vessels,including various types of watercraft and high-speed boats,in fulfilling of needs in different maritime transportation scenarios,the HS-GEV emerges as a promising solution to address unmet requirements.To efficiently accomplish maritime transportation missions with quickness and safety,several critical features are emphasized,including short take-off on water,flight maneuverability and flight stability.The key techniques required to achieve these features,as well as recent progress highlights,are introduced.Following and promoting these crucial techniques is also suggested as a future step to improve HS-GEV performance.With its predominant features,the HS-GEV holds immense application value in enhancing a high-speed maritime transportation system that aligns with the evolving needs of the real world.
基金Supported by Yildiz Technical University Scientific Research Projects Coordination Department under Project No.2013-10-01-KAP02
文摘Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.
基金the National Natural Science Foundation of China (Grant No.10572082)the Shanghai Leading Academic Discipline Project (Grant No.Y0103).
文摘The near-wake flow of a NACA0012 airfoils mounted above a water surface were experimentally studied in a wind/wave tunnel. The main objective of this study is to investigate the influence of the free surface on the structure of the airfoil trailing wake. The flow structure was measured with different ride heights between the airfoil and free surface using a Particle Image Velocimetry (PIV) system. The Reynolds number based on the chord length of the airfoil was about 3.5×10^3. For each experimental condition, large amount of instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity and mean vorticity, as well as turbulence statistics. The results show that the flow structures of the airfoil wake varies remarkably with the change in the ride height.