A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f...A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.展开更多
This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method...This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.展开更多
The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according...The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components.The foundation medium is also considered to be linear,homogeneous,and isotropic,and modeled using the Winkler-Pasternak law.The hyperbolic shear deformation theory is applied for the kinematic relations,and the equations of motion are obtained using the Hamilton’s principle.An analytical solution is presented accordingly,assuming that the PFG beam is simply supported.Comparisons with the open literature are implemented to verify the validity of such a formulation.The effects of the elastic foundations,porosity volume percentage and span-to-depth ratio are finally discussed in detail.展开更多
This study investigates the forced vibration of functionally graded hexagonal nano-size plates for the first time.A quasi-three-dimensional(3D)plate theory including stretching effect is used to model the anisotropic ...This study investigates the forced vibration of functionally graded hexagonal nano-size plates for the first time.A quasi-three-dimensional(3D)plate theory including stretching effect is used to model the anisotropic plate as a continuum one where small-scale effects are considered based on nonlocal strain gradient theory.Also,the plate is assumed on a Pasternak foundation in which normal and transverse shear loads are taken into account.The governing equations of motion are obtained via the Hamiltonian principles which are solved using analytical based methods by means of Navier’s approximation.The influences of the exponential factor,nonlocal parameter,strain gradient parameter,Pasternak foundation coefficients,length-to-thickness,and length-to-width ratios on the dynamic response of the nanoplates are examined.In addition,the accuracy of an isotropic approximate instead of the anisotropic model is studied.The dynamic behavior of the system shows that mechanical mathematics-based models may get better results considering the anisotropic model because the dynamic response can cause prominent differences(up to 17%)between isotropic approximation and anisotropic model.展开更多
In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer...In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations on the Pasternak foundation are obtained. Applying Galerkin’s method analytic solutions are obtained for the critical axial load of three-layered cylindrical shells containing an FGM layer with and without elastic foundation. The detailed parametric studies are carried out to study the influences of thickness variations of the FGM layer, radius-to-thickness ratio, material composition and material profile index, Winkler and Pasternak foundations on the critical axial load of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.展开更多
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.
文摘This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.
文摘The bending and free vibration of porous functionally graded(PFG)beams resting on elastic foundations are analyzed.The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components.The foundation medium is also considered to be linear,homogeneous,and isotropic,and modeled using the Winkler-Pasternak law.The hyperbolic shear deformation theory is applied for the kinematic relations,and the equations of motion are obtained using the Hamilton’s principle.An analytical solution is presented accordingly,assuming that the PFG beam is simply supported.Comparisons with the open literature are implemented to verify the validity of such a formulation.The effects of the elastic foundations,porosity volume percentage and span-to-depth ratio are finally discussed in detail.
文摘This study investigates the forced vibration of functionally graded hexagonal nano-size plates for the first time.A quasi-three-dimensional(3D)plate theory including stretching effect is used to model the anisotropic plate as a continuum one where small-scale effects are considered based on nonlocal strain gradient theory.Also,the plate is assumed on a Pasternak foundation in which normal and transverse shear loads are taken into account.The governing equations of motion are obtained via the Hamiltonian principles which are solved using analytical based methods by means of Navier’s approximation.The influences of the exponential factor,nonlocal parameter,strain gradient parameter,Pasternak foundation coefficients,length-to-thickness,and length-to-width ratios on the dynamic response of the nanoplates are examined.In addition,the accuracy of an isotropic approximate instead of the anisotropic model is studied.The dynamic behavior of the system shows that mechanical mathematics-based models may get better results considering the anisotropic model because the dynamic response can cause prominent differences(up to 17%)between isotropic approximation and anisotropic model.
文摘In this study, the stability of cylindrical shells that composed of ceramic, FGM, and metal layers subjected to axial load and resting on Winkler-Pasternak foundations is investigated. Material properties of FGM layer are varied continuously in thickness direction according to a simple power distribution in terms of the ceramic and metal volume fractions. The modified Donnell type stability and compatibility equations on the Pasternak foundation are obtained. Applying Galerkin’s method analytic solutions are obtained for the critical axial load of three-layered cylindrical shells containing an FGM layer with and without elastic foundation. The detailed parametric studies are carried out to study the influences of thickness variations of the FGM layer, radius-to-thickness ratio, material composition and material profile index, Winkler and Pasternak foundations on the critical axial load of three-layered cylindrical shells. Comparing results with those in the literature validates the present analysis.