Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human...Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.展开更多
Interannual variations of the eddy kinetic energy(EKE)related to two types of winter circulation events(“O”and“U”)were investigated based on the outputs of the Ocean General Circulation Model(OGCM)for the Earth Si...Interannual variations of the eddy kinetic energy(EKE)related to two types of winter circulation events(“O”and“U”)were investigated based on the outputs of the Ocean General Circulation Model(OGCM)for the Earth Simulator(OFES)and the corresponding energetic analyses.Results show that the EKE is strong and extends eastward to offshore the Vietnam coast about 2°,associated with the weaker South China Sea western boundary current(SCSwbc)in“O”type years,while the EKE is weak and high value that can be attained is narrowed along the coast,associated with the stronger SCSwbc in“U”type years.The energy budget shows that the wind stress and barotropic/baroclinic instability are important factors to regulate the EKE in“U”and“O”years.For“U”years,under a strong winter monsoon forcing,the SCSwbc strengthen,the directly wind work and barotropic conversion from the mean kinetic energy(MKE)to EKE are weak,thus the EKE decrease corresponding to the baroclinic conversion from the kinetic energy to potential energy.However,the situation is reversed in“O”years.Under the influence of El Niño events,wind stress forces can weaken SCSwbc and enhance EKE in pattern“O”,whereas La Niña events have relatively weaker influences.The barotropic conversion rate in“O”type is nearly eight times of the“U”type.The pressure work and advection term are the main sources to greatly suppress EKE in the SCSwbc region.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
The unique survey in December 1998 mapped the entire western boundary area of the South China Sea(SCS),which reveals the three-dimensional structure and huge volume transport of the swift and narrow winter western b...The unique survey in December 1998 mapped the entire western boundary area of the South China Sea(SCS),which reveals the three-dimensional structure and huge volume transport of the swift and narrow winter western boundary current of the SCS(SCSwwbc) in full scale. The current is found to flow all the way from the shelf edge off Hong Kong to the Sunda Shelf with a width around 100 km and a vertical scale of about 400 m. It appears to be the strongest off the Indo-China Peninsula, where its volume transport reached over 20×10~6 m^3/s. The current is weaker upstream in the northern SCS to the west of Hong Kong. A Kuroshio loop or detached eddy intruded through the Luzon Strait is observed farther east where the SCSwwbc no more exists. The results suggest that during the survey the SCSwwbc was fed primarily by the interior recirculation of the SCS rather than by the"branching" of the Kuroshio from the Luzon Strait as indicated by surface drifters, which is likely a near-surface phenomenon and only contributes a minor part to the total transport of the SCSwwbc. Several topics related to the SCSwwbc are also discussed.展开更多
Winter rainfall over South China shows strong interannual variability,which accounts for about half of the total winter rainfall over South China.This study investigated the predictability of winter (December-January...Winter rainfall over South China shows strong interannual variability,which accounts for about half of the total winter rainfall over South China.This study investigated the predictability of winter (December-January-February; DJF) rainfall over South China using the retrospective forecasts of five state-of-the-art coupled models included in the ENSEMBLES project for the period 1961-2006.It was found that the ENSEMBLES models predicted the interannual variation of rainfall over South China well,with the correlation coefficient between the observed/station-averaged rainfall and predicted/areaaveraged rainfall being 0.46.In particular,above-normal South China rainfall was better predicted,and the correlation coefficient between the predicted and observed anomalies was 0.64 for these wetter winters.In addition,the models captured well the main features of SST and atmospheric circulation anomalies related to South China rainfall variation in the observation.It was further found that South China rainfall,when predicted according to predicted DJF Nifio3.4 index and the ENSO-South China rainfall relationship,shows a prediction skill almost as high as that directly predicted,indicating that ENSO is the source for the predictability of South China rainfall.展开更多
Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) durin...Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.展开更多
A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results rev...A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection.展开更多
This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have d...This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have different origins on the 10-20-day and 30-60-day time scales.On the 10-20-day time scale,large rainfall anomalies over the southern SCS are preceded by strong northerly wind anomalies associated with the East Asian winter monsoon(EAWM),by about two days.On the 30-60-day time scale,the strong EAWM-related northerly wind anomalies almost appear simultaneously with large rainfall anomalies over the southern SCS.In addition,obvious large rainfall anomalies occur over the southeastern tropical Indian Ocean about one week before the peak southern SCS rainfall anomalies.It indicates that the convection and related circulation anomalies with origins over the tropical Indian Ocean may play an important role in inducing intraseasonal rainfall variations over the southern SCS on the 30-60-day time scale,but not on the 10-20-day time scale.展开更多
Numerical modeling and experiments are conducted for the South China Sea typhoons Helen (1995) and Willie (1996) with an auto-adaptive mesh model. It is shown that durating the stage of dissipation the typhoons are ma...Numerical modeling and experiments are conducted for the South China Sea typhoons Helen (1995) and Willie (1996) with an auto-adaptive mesh model. It is shown that durating the stage of dissipation the typhoons are mainly related with the subtropical high rather than the topography. The high is sensitive to the intensity change of the typhoon so that the former weakens as the latter strengthens and vice versa. Maintaining the typhoon as a main factor, the release of latent heat is in reversed proportion with the subtropical high in terms of the intensity. It is found that the storm tends to be maintained if it moves close to the westerly trough after landfall.展开更多
The region of south China is sometimes subject to major climatic catastrophes in winter. To have a clear understanding, the time in which extremely severe cold months occur in the south China wintertime over the past ...The region of south China is sometimes subject to major climatic catastrophes in winter. To have a clear understanding, the time in which extremely severe cold months occur in the south China wintertime over the past 45 years are determined and characteristics of the 500-hPa geopotential fields and SST fields are studied for the simultaneous and preceding 6-month periods. Similarity exists in the 500-hPa geopotential fields between each current severely cold month, with the geopotential pattern of being high in the north, but low in the south, of Asian-Pacific region and meridional circulation developing. The work presents anomalies of the months with significant differences in the 500-hPa geopotential field of the previous periods. The SSTA is continuous in the distribution from each extremely severe cold winter month back to the 6 months leading up to it for the region of south China while the SST pattern is of El Ni?o in January and the preceding 1 ~ 6 months for equatorial eastern Pacific but of La Ni?a in February and December. It is concluded that the prediction of severely cold winter months are possible with the use of the geopotential field at 500 hPa and the SST fields for the months ahead of the target time.展开更多
The authors explore the intraseasonal oscillation(ISO)of rainfall anomalies in South China,the related circulation regimes,and discuss the possible causes of the large variability of the positive rainfall anomalies ov...The authors explore the intraseasonal oscillation(ISO)of rainfall anomalies in South China,the related circulation regimes,and discuss the possible causes of the large variability of the positive rainfall anomalies over South China during the winter of the 1982/83,1997/98 and 2015/16 super EI Nino events.Case-by-case analysis shows that the 10–20-day ISO associated with the successive heavy rainfall events lead to the positive anomalies of winter rainfall in the three winters.Meanwhile,the 20–50-day ISO is relatively stronger in the winter of 1982/83 and 2015/16 but weaker in the winter of 1997/98.Except for a different speed,the anomalies of the 200-hPa wave train associated with the two ISOs both propagate eastward along the westerly jet between 20 N and 30 N.In the winter of 1982/83 and 2015/16,when the upper-level subseasonal wave trains in different periods pass through South China,the in-phase enhancement of upper-level divergences and the pumping effect could induce the persistent heavy rainfall events,which facilitate the stronger seasonal-mean rainfall.Although the 10–20-day ISO alone in the winter of 1997/98 could cause the higher-frequency rainfall events,the weaker 20–50-day ISO attenuates the anomalies of the South China winter rainfall.Therefore,the joint effects of the 10–20-and 20–50-day ISOs are critical for the larger amount of above-normal rainfall over South China during the mature phase of super EI Nino events.展开更多
On the basis of 900-year integration of a global ocean circulation model-LICOM driven by ECMWF reanalysis wind data with uniform 0.5°-grids, a quantitative estimate of the annual and monthly mean water exchange o...On the basis of 900-year integration of a global ocean circulation model-LICOM driven by ECMWF reanalysis wind data with uniform 0.5°-grids, a quantitative estimate of the annual and monthly mean water exchange of the South China Sea (SCS) with its adjacent oceans through 5 straits is obtained. Among them, the annual transport is the largest in the Luzon Strait, then in the Taiwan Strait, and then in the Sunda Shelf, in the Balabac Strait and in the Mindoro Strait in turn, the largest monthly transport variation appears in the Luzon Strait and Sunda shelf. It is shown that the mass transport through the Taiwan Strait is affected by monsoon, while the transport through the Luzon Strait may be associated with the bifurcation position of the North Equatorial Current off the east Philippines shore; the transports in the Luzon Strait and Sunda Shelf are out of phase in direction but well correlated in magnitude. The annual and monthly mean heat and salinity exchange of the SCS through the straits are also calculated and shown to be in phase with the mass transport. The Kuroshio water carries about 0.43 PW heat transport and 151.33 kt/s salinity transport into the SCS, while most of them is carried out of the SCS through the Taiwan Strait and Sunda Shelf annually. The further model integration based on the 900-year integration for another 44 a from 1958 to 2001 driven by real wind data (ERA40 data) shows that the monthly mean mass transport via these straits varies annually with a large variation range, which may be associated with the seasonal and interannual variations in the current field and sea surface height in the SCS. The mean mass transport through the Taiwan Strait, Luzon Strait, Mindoro Strait, Balabac Strait and Sunda Shelf is 2.012×10^6, -4.063×10^6, -0.124×10^6, -0.083×10^6 and 2.258×10^6 m^3/s, respectively.展开更多
South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpa...South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garze Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Threeriver Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (〉40 km) and thin lithosphere (〈150 km). The HOB, YOB and MOB have a thin crust (〈40 km) and thin lithosphere (〈150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration.展开更多
In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that incl...In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that included the horizontal and vertical structures. The results confirmed that the upper-ocean heat content in the SCS is lower than normal during the mature phase of E1 Nifio events, and two super E1 Nifio events, 1982/1983 and 1997/1998 were also included. The variability of the heat content was consistent with the variability of the dynamic height anomalies. The SCS throughflow (SCSTF) plays an important role in regulating the interannual variability of the heat content, especially during the mature phase of E1 Nifio events.展开更多
The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation...The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation and distribution of the atmospheric heat sources are important for the monsoon onset. The earlier onset of the SCS monsoon is the result of enduring atmospheric heating in the Indo–China Peninsula and South China areas. The atmospheric heating firstly appears in the Indo–China Peninsula area and the sensible heat is the major one. The 30–50 day periodic oscillation of atmospheric heat sources between the SCS area and the western Pacific warm pool has a reverse phase distribution before the middle of July and the low frequency oscillation of heat sources in SCS area has an obvious longitudinal propagation. The 30–50 day low frequency oscillation has vital modificatory effects on the summer monsoon evolution during 1998. Key words Apparent heat sources - Apparent moisture sinks - The South China Sea monsoon - Diagnostic Study Sponsored by the National Key Project of Fundamental Research “ SCSMEX” and the Research Fund for the Doctoral Program of Higher Education: “ Study of the Air-sea Interaction in the SCS Monsoon Region”.展开更多
In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution ...In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1°×1°) for the warm pool heat content was determined with its center at 3°N/138°E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2°N/137°E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2°N/137°E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13°S/74°E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.展开更多
In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (W...In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS.展开更多
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using th...The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.展开更多
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
基金Under the auspices of the Social Science and Humanity on Young Fund of the Ministry of Education of China(No.21YJCZH100)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)+1 种基金the Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(No.CXZX2021032)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(No.72202200205)。
文摘Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.
基金Supported by the Science and Technology Basic Resources Investigation Program of China(No.2017 FY 201402)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML 2019 ZD 0304)+4 种基金the National Key Research and Development Program of China(No.2017 YFC 1404000)the National Natural Science Foundation of China(Nos.41876017,42176027,41628601,41706027,41776014)the Guangzhou Science and Technology Plan Project(No.202102080364)the Guangdong Basic and Applied Basic Research Foundation(No.2022 A 1515011863)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology Chinese Academy of Sciences(Nos.LTOZZ 2101,LTOZZ 2102)。
文摘Interannual variations of the eddy kinetic energy(EKE)related to two types of winter circulation events(“O”and“U”)were investigated based on the outputs of the Ocean General Circulation Model(OGCM)for the Earth Simulator(OFES)and the corresponding energetic analyses.Results show that the EKE is strong and extends eastward to offshore the Vietnam coast about 2°,associated with the weaker South China Sea western boundary current(SCSwbc)in“O”type years,while the EKE is weak and high value that can be attained is narrowed along the coast,associated with the stronger SCSwbc in“U”type years.The energy budget shows that the wind stress and barotropic/baroclinic instability are important factors to regulate the EKE in“U”and“O”years.For“U”years,under a strong winter monsoon forcing,the SCSwbc strengthen,the directly wind work and barotropic conversion from the mean kinetic energy(MKE)to EKE are weak,thus the EKE decrease corresponding to the baroclinic conversion from the kinetic energy to potential energy.However,the situation is reversed in“O”years.Under the influence of El Niño events,wind stress forces can weaken SCSwbc and enhance EKE in pattern“O”,whereas La Niña events have relatively weaker influences.The barotropic conversion rate in“O”type is nearly eight times of the“U”type.The pressure work and advection term are the main sources to greatly suppress EKE in the SCSwbc region.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.
基金The National Basic Research Program(973 Program)of China under contract Nos 2009CB421205 and 2011CB40350the National Key Research and Development Program of China under contract No.2016YFC1402607the State Oceanic Administration Special Grant of China under contract No.HY126-04-02-03
文摘The unique survey in December 1998 mapped the entire western boundary area of the South China Sea(SCS),which reveals the three-dimensional structure and huge volume transport of the swift and narrow winter western boundary current of the SCS(SCSwwbc) in full scale. The current is found to flow all the way from the shelf edge off Hong Kong to the Sunda Shelf with a width around 100 km and a vertical scale of about 400 m. It appears to be the strongest off the Indo-China Peninsula, where its volume transport reached over 20×10~6 m^3/s. The current is weaker upstream in the northern SCS to the west of Hong Kong. A Kuroshio loop or detached eddy intruded through the Luzon Strait is observed farther east where the SCSwwbc no more exists. The results suggest that during the survey the SCSwwbc was fed primarily by the interior recirculation of the SCS rather than by the"branching" of the Kuroshio from the Luzon Strait as indicated by surface drifters, which is likely a near-surface phenomenon and only contributes a minor part to the total transport of the SCSwwbc. Several topics related to the SCSwwbc are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41305067 and 41320104007)
文摘Winter rainfall over South China shows strong interannual variability,which accounts for about half of the total winter rainfall over South China.This study investigated the predictability of winter (December-January-February; DJF) rainfall over South China using the retrospective forecasts of five state-of-the-art coupled models included in the ENSEMBLES project for the period 1961-2006.It was found that the ENSEMBLES models predicted the interannual variation of rainfall over South China well,with the correlation coefficient between the observed/station-averaged rainfall and predicted/areaaveraged rainfall being 0.46.In particular,above-normal South China rainfall was better predicted,and the correlation coefficient between the predicted and observed anomalies was 0.64 for these wetter winters.In addition,the models captured well the main features of SST and atmospheric circulation anomalies related to South China rainfall variation in the observation.It was further found that South China rainfall,when predicted according to predicted DJF Nifio3.4 index and the ENSO-South China rainfall relationship,shows a prediction skill almost as high as that directly predicted,indicating that ENSO is the source for the predictability of South China rainfall.
基金funded by the Guangdong Natural Science Foundation (No.2015A030313796)the National Natural Science Foundation of China (No.41205026)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA11010104)the Knowledge Innovation Program of Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of China and the research fund for the doctoral program of Higher Education for Youths
文摘Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.
基金Project of Important Research Direction of Knowledge Infrastructure Building by the ChineseAcademy of Sciences (ZKCX2-WS-210) Research Project on Monitoring and Pre-warning Techniques of SevereWeather in the Pearl River Delta (2003DIB4J145)
文摘A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection.
基金supported by the National Natural Science Foundation of China[grant numbers 41475081,41275081,41505048,41505061,and 41461164005]the State Key Laboratory of Severe Weather Special Fund[grant number 2015LASW-B04]
文摘This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have different origins on the 10-20-day and 30-60-day time scales.On the 10-20-day time scale,large rainfall anomalies over the southern SCS are preceded by strong northerly wind anomalies associated with the East Asian winter monsoon(EAWM),by about two days.On the 30-60-day time scale,the strong EAWM-related northerly wind anomalies almost appear simultaneously with large rainfall anomalies over the southern SCS.In addition,obvious large rainfall anomalies occur over the southeastern tropical Indian Ocean about one week before the peak southern SCS rainfall anomalies.It indicates that the convection and related circulation anomalies with origins over the tropical Indian Ocean may play an important role in inducing intraseasonal rainfall variations over the southern SCS on the 30-60-day time scale,but not on the 10-20-day time scale.
文摘Numerical modeling and experiments are conducted for the South China Sea typhoons Helen (1995) and Willie (1996) with an auto-adaptive mesh model. It is shown that durating the stage of dissipation the typhoons are mainly related with the subtropical high rather than the topography. The high is sensitive to the intensity change of the typhoon so that the former weakens as the latter strengthens and vice versa. Maintaining the typhoon as a main factor, the release of latent heat is in reversed proportion with the subtropical high in terms of the intensity. It is found that the storm tends to be maintained if it moves close to the westerly trough after landfall.
基金Research on short-term climatic prediction systems in China" - a key scientific and technological project in the national 9th
文摘The region of south China is sometimes subject to major climatic catastrophes in winter. To have a clear understanding, the time in which extremely severe cold months occur in the south China wintertime over the past 45 years are determined and characteristics of the 500-hPa geopotential fields and SST fields are studied for the simultaneous and preceding 6-month periods. Similarity exists in the 500-hPa geopotential fields between each current severely cold month, with the geopotential pattern of being high in the north, but low in the south, of Asian-Pacific region and meridional circulation developing. The work presents anomalies of the months with significant differences in the 500-hPa geopotential field of the previous periods. The SSTA is continuous in the distribution from each extremely severe cold winter month back to the 6 months leading up to it for the region of south China while the SST pattern is of El Ni?o in January and the preceding 1 ~ 6 months for equatorial eastern Pacific but of La Ni?a in February and December. It is concluded that the prediction of severely cold winter months are possible with the use of the geopotential field at 500 hPa and the SST fields for the months ahead of the target time.
基金jointly supported by the Special Fund for Public Welfare Industry[grant number GYHY20140619]the National Natural Science Foundation of China[grant numbers41475057,41775052 and 41505049]the Basic Scientific Research and Operation Foundation of CAMS[grant numbers2015Z001 and 2017R001]
文摘The authors explore the intraseasonal oscillation(ISO)of rainfall anomalies in South China,the related circulation regimes,and discuss the possible causes of the large variability of the positive rainfall anomalies over South China during the winter of the 1982/83,1997/98 and 2015/16 super EI Nino events.Case-by-case analysis shows that the 10–20-day ISO associated with the successive heavy rainfall events lead to the positive anomalies of winter rainfall in the three winters.Meanwhile,the 20–50-day ISO is relatively stronger in the winter of 1982/83 and 2015/16 but weaker in the winter of 1997/98.Except for a different speed,the anomalies of the 200-hPa wave train associated with the two ISOs both propagate eastward along the westerly jet between 20 N and 30 N.In the winter of 1982/83 and 2015/16,when the upper-level subseasonal wave trains in different periods pass through South China,the in-phase enhancement of upper-level divergences and the pumping effect could induce the persistent heavy rainfall events,which facilitate the stronger seasonal-mean rainfall.Although the 10–20-day ISO alone in the winter of 1997/98 could cause the higher-frequency rainfall events,the weaker 20–50-day ISO attenuates the anomalies of the South China winter rainfall.Therefore,the joint effects of the 10–20-and 20–50-day ISOs are critical for the larger amount of above-normal rainfall over South China during the mature phase of super EI Nino events.
基金This work was jointly supported by the National Natural Science Foundation of China under contract No.40376003the National Key Basic Research of China under contract NOs G1999043808 and G2000078502+1 种基金the National Special Projects of China under contract NOs 908-02-01-03 and 2001DIA50041the Knowledge Innovation Frontier Project of SCSIO under contract No.LYQY200310.
文摘On the basis of 900-year integration of a global ocean circulation model-LICOM driven by ECMWF reanalysis wind data with uniform 0.5°-grids, a quantitative estimate of the annual and monthly mean water exchange of the South China Sea (SCS) with its adjacent oceans through 5 straits is obtained. Among them, the annual transport is the largest in the Luzon Strait, then in the Taiwan Strait, and then in the Sunda Shelf, in the Balabac Strait and in the Mindoro Strait in turn, the largest monthly transport variation appears in the Luzon Strait and Sunda shelf. It is shown that the mass transport through the Taiwan Strait is affected by monsoon, while the transport through the Luzon Strait may be associated with the bifurcation position of the North Equatorial Current off the east Philippines shore; the transports in the Luzon Strait and Sunda Shelf are out of phase in direction but well correlated in magnitude. The annual and monthly mean heat and salinity exchange of the SCS through the straits are also calculated and shown to be in phase with the mass transport. The Kuroshio water carries about 0.43 PW heat transport and 151.33 kt/s salinity transport into the SCS, while most of them is carried out of the SCS through the Taiwan Strait and Sunda Shelf annually. The further model integration based on the 900-year integration for another 44 a from 1958 to 2001 driven by real wind data (ERA40 data) shows that the monthly mean mass transport via these straits varies annually with a large variation range, which may be associated with the seasonal and interannual variations in the current field and sea surface height in the SCS. The mean mass transport through the Taiwan Strait, Luzon Strait, Mindoro Strait, Balabac Strait and Sunda Shelf is 2.012×10^6, -4.063×10^6, -0.124×10^6, -0.083×10^6 and 2.258×10^6 m^3/s, respectively.
基金supported by grants from the National Basic Research Program project (2005CB422101).
文摘South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garze Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Threeriver Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (〉40 km) and thin lithosphere (〈150 km). The HOB, YOB and MOB have a thin crust (〈40 km) and thin lithosphere (〈150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration.
基金supported by the National Natural Science Foundation of China (GrantNo. 40806005)by the Chinese Academy of Sciences’Knowledge Innovation Program (Grant No. KZCX2-YW-Q11-02)partially supported under the South China Sea Institute of Oceanology (Grant No. SQ200814)
文摘In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that included the horizontal and vertical structures. The results confirmed that the upper-ocean heat content in the SCS is lower than normal during the mature phase of E1 Nifio events, and two super E1 Nifio events, 1982/1983 and 1997/1998 were also included. The variability of the heat content was consistent with the variability of the dynamic height anomalies. The SCS throughflow (SCSTF) plays an important role in regulating the interannual variability of the heat content, especially during the mature phase of E1 Nifio events.
基金National Key Project of Fundamental Research u SCSMEX" the Research Fund for the Doctoral Program of Higher Education:" Stud
文摘The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation and distribution of the atmospheric heat sources are important for the monsoon onset. The earlier onset of the SCS monsoon is the result of enduring atmospheric heating in the Indo–China Peninsula and South China areas. The atmospheric heating firstly appears in the Indo–China Peninsula area and the sensible heat is the major one. The 30–50 day periodic oscillation of atmospheric heat sources between the SCS area and the western Pacific warm pool has a reverse phase distribution before the middle of July and the low frequency oscillation of heat sources in SCS area has an obvious longitudinal propagation. The 30–50 day low frequency oscillation has vital modificatory effects on the summer monsoon evolution during 1998. Key words Apparent heat sources - Apparent moisture sinks - The South China Sea monsoon - Diagnostic Study Sponsored by the National Key Project of Fundamental Research “ SCSMEX” and the Research Fund for the Doctoral Program of Higher Education: “ Study of the Air-sea Interaction in the SCS Monsoon Region”.
基金Supported by the National Basic Research Program of China (973 Programm) (No.2007CB411802 and 2006CB403603)
文摘In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1°×1°) for the warm pool heat content was determined with its center at 3°N/138°E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2°N/137°E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2°N/137°E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13°S/74°E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950400 and 2013CB430301)the National Natural Science Foundation of China (Grant Nos. 41276025 and 41176023)+2 种基金the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201106036)The OFES simulation was conducted on the Earth Simulator under the support of JAMSTECsupported by the Data Sharing Infrastructure of Earth System Science-Data Sharing Service Center of the South China Sea and adjacent regions
文摘In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS.
基金the National Natural Basic Research Program (" 973" Program) of China, under contract No. 2011CB403504 and No. 2011CB403501the Marine Science Foundation for Young Scientists of State Oceanic Administration of China No. 2012221+1 种基金the National Natural Science Foundation of China under contract No. 40806003the Knowledge Innovation Project for Distinguished Young Scholar of the Chinese Academy of Sciences of China under contract No.KZCX2-EW-QN203
文摘The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.