The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
[Objective] This study aimed to investigate the growth and development and dry matter production and allocation of greenhouse tomato in North China. [Method] With tomato cultivar 'Jinguo No.l' as the experimental ma...[Objective] This study aimed to investigate the growth and development and dry matter production and allocation of greenhouse tomato in North China. [Method] With tomato cultivar 'Jinguo No.l' as the experimental material, the ex- periments were conducted in a solar greenhouse located in Taigu, Shanxi (37o25' N, 112o25' E) from March to July, in 2014 and 2015. [Result] The plant height, leaf number, leaf area and dry matter production of greenhouse tomato increased lin- early with the increased days after transplantation, and their growth rates were 2.74 cm/d, 0.32 leaf/d, 70 cm2/d and 9.4 g/(m2.d), respectively. The fruit dry weight also showed a linear relationship with the plant dry weight. After fruit setting, the fruit dry weight was increased by about 0.69 g when the plant dry weight was increased by 1 g. The allocation proportions of dry matter in tomato roots, stems and leaves de- clined significantly from plant flowering to fruiting, while the proportion of fruit dry weight in plant dry weight increased significantly, exceeding 60%. There was a strong linear relationship between dry matter production of tomato and effective cu- mulative temperature (sum of temperature higher than 10 ^(3) in the solar green- house, and the dry matter production was increased by about 0.73 g/m2 when the effective cumulative temperature was increased by one unit. The dry matter produc- tion of tomato plant also showed a strong linear relationship with photosynthetic ac- tive radiation (PAR) in the greenhouse, and about 3.4 g of dry matter was synthe- sized per unit (M J) of PAR. [Conclusion] Extending the growing period and improv- ing the temperature and light conditions could increase the dry matter production of tomato.展开更多
In order to completely evaluate ammonia emission from greenhouse vegetable fields,crop canopy absorption should not be neglected.The foliar uptake of NH3 applied at two growth stages and the subsequent 15N-labeled N t...In order to completely evaluate ammonia emission from greenhouse vegetable fields,crop canopy absorption should not be neglected.The foliar uptake of NH3 applied at two growth stages and the subsequent 15N-labeled N translocation to other plant components were investigated under greenhouse conditions using chambers covered with the soil of a tomato field.Treatments comprised three NH3-N application rates(70,140,and 210 mg/plot) using 15N-labeled ammonium sulfate.Plants were harvested immediately after exposure for 24 h,and the total N concentrations and 15N/14 N ratios were determined.With increased NH3 concentration,total 15NH3-N absorption increased considerably,whereas the applied 15NH3-N uptake decreased gradually.The tomato plants absorbed 33-38% and 24-31% of the 15NH3-N generated at the anthesis and fruit growth stages,respectively.A total of 71-80% of the recovered NH3 was observed in the leaves and 20-30% of the recovered NH3 was remobilized to other components.Among them,an average of 10% of the absorbed 15NH3-N was transferred into the tomato fruits.All these results indicated the potential of the tested tomatoes for the foliar uptake of atmospheric 15NH3 and the distribution of 15N-labeled vegetative N among different plant components.The results are of great importance for the complete evaluation of nitrogen use efficiency in the greenhouse tomato fields.展开更多
Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse...Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse tomato (Lycopersicum esculentum Mill.) to examine the effect of two bacterial strains, Bacillus subtilis (CGMCC 1.3343) and Pseudomonas fluorescens (CGMCC 1.1802), on tomato growth, gray mold disease control, catabolic and genetic microbial features of indigenous rhizosphere bacteria under lownitrogen conditions. A commercial inoculant (ETS) was also tested as a comparison. Both B. subtilis and P. fluorescens promoted growth and biomass of seedlings, while only B. subtilis was efficient in reducing gray mold incidence in greenhouse tomato. The two bacterial strains could colonization in tomato rhizosphere soil at the end of experiment (10 days after the last inoculation). Different AWCD trends and DGGE patterns were got in different bacterial treatments; however, analyses of microbial diversities showed that indigenous soil microbes did not seem to have significant differences at either the catabolic or genetic level among treatments. ETS, as a commercial microbial agent, promoted plant growth and gave a higher microbial diversity in rhizosphere soil.展开更多
Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two cons...Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique. Four treatments, aerated deficit irrigation(AI1), non-aerated deficit irrigation(CK1), aerated full irrigation(AI2) and non-aerated full irrigation(CK2), were performed. The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation(P〈0.05). Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation. Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season(P〈0.05). A slight increase of CO2 emissions in the two seasons was observed under full irrigation(P〉0.05). There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season. Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment(P〈0.05). Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes. Soil temperature, soil moisture and NO3^- were the primary factors influencing N2O fluxes. Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields.展开更多
[Objective]The aim was to explore the feasibility of applying oyster shell soil amendment for tomato production in order to determine proper quantity of the soil conditional.[Method]Field tests were performed to resea...[Objective]The aim was to explore the feasibility of applying oyster shell soil amendment for tomato production in order to determine proper quantity of the soil conditional.[Method]Field tests were performed to research effects of the soil conditioner on tomato yield,quality and soil p H.[Result]The results showed that tomato yield increased in the treatment groups with oyster shell soil amendment.The group SC50 increased the most by 16.5%than the control group.Based on normal fertilization,tomato growth was promoted by the soil amendment,and per tomato weight and lycopene content both improved during peak-fruiting period.Besides,soil p H value was enhanced by the soil amendment also.[Conclusion]It can be concluded that the effect was the best when soil conditioner was applied at 750 kg/hm2.展开更多
With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001) and ...With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001) and cowpea (2004) crop evapotranspiration (ETc) in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants’ growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.展开更多
With the implementation of the "13^(th) Five-Year Plan" to promote the border area and raise rural living standards, the Xinjiang Production and Construction Corps has paid more and more attention to the dev...With the implementation of the "13^(th) Five-Year Plan" to promote the border area and raise rural living standards, the Xinjiang Production and Construction Corps has paid more and more attention to the development of protected agriculture, which is needed for the comprehensive development and stability of the border groups. In this paper, the current status of greenhouse tomato production in Aksu of southern Xinjiang is analyzed and summarized, finding the following: the structure is not reasonable with poor performance; the soilless cultivation mode is gradually developed, and there are innovative forms; the fertilization structure is not reasonable and needs improvement; the technical level is low, and it needs to be upgraded. Therefore, to solve the various problems that exist at present, some efforts are needed achieve a better production model.展开更多
To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's ...To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.展开更多
为了实现大棚环境中番茄的智能在线产量估算,提出了一种基于改进的YOLOv5(You Only Look Once v5)番茄识别算法,对自然生长状态下的番茄果实产量进行统计和估算。首先,使用可分离视觉转换器(Separable Vision Transformer,SepViT)替换...为了实现大棚环境中番茄的智能在线产量估算,提出了一种基于改进的YOLOv5(You Only Look Once v5)番茄识别算法,对自然生长状态下的番茄果实产量进行统计和估算。首先,使用可分离视觉转换器(Separable Vision Transformer,SepViT)替换骨干网络的最后一层,以增强骨干网络与全局信息之间的联系并提取番茄特征;其次,引入WIOU(Wise Intersection over Union)损失函数和Mish激活函数,以提高收敛速度和精度。试验结果表明,改进后的检测模型在平均精度(mean Average Precision,mAP)方面达到了99.5%,相较传统的YOLOv5模型提高了1.1个百分点,每张图像的处理时间为15 ms。此外,改进后的YOLOv5算法对密集和遮挡情况下的番茄果实识别效果更好。展开更多
This study was conducted to study the optimum dosage of potassium ful- vate (PF) on greenhouse tomato, the effects of different amounts of PF on yield and quality of greenhouse tomato and soil physical and chemical ...This study was conducted to study the optimum dosage of potassium ful- vate (PF) on greenhouse tomato, the effects of different amounts of PF on yield and quality of greenhouse tomato and soil physical and chemical properties were investigated by a field plot experiment. The results showed that the bottom applica- tion of PF increased tomato yield, plant dry matter weight and root dry matter weight by 14.0%, 14.4 and 50.6%, respectively; Vc and soluble sugar content of tomato increased by 1&5% and 10.0%, respectively; and soil bulk density de- creased by 3.6%, and CEC increased by 5.0%. All the indexes increased with the increase of PF application amount, and reached the maximum value when the PF application rate was 4 500 kg/hm2. In consideration of the cost of fertilizer and all indexes, the optimum dosaqe of PF fertilizer was 4 500 kg/hm2.展开更多
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金Supported by Key Program of the National Natural Science Foundation of China(61233006)Key Science and Technology Program of Shanxi Province(20130311010-1)
文摘[Objective] This study aimed to investigate the growth and development and dry matter production and allocation of greenhouse tomato in North China. [Method] With tomato cultivar 'Jinguo No.l' as the experimental material, the ex- periments were conducted in a solar greenhouse located in Taigu, Shanxi (37o25' N, 112o25' E) from March to July, in 2014 and 2015. [Result] The plant height, leaf number, leaf area and dry matter production of greenhouse tomato increased lin- early with the increased days after transplantation, and their growth rates were 2.74 cm/d, 0.32 leaf/d, 70 cm2/d and 9.4 g/(m2.d), respectively. The fruit dry weight also showed a linear relationship with the plant dry weight. After fruit setting, the fruit dry weight was increased by about 0.69 g when the plant dry weight was increased by 1 g. The allocation proportions of dry matter in tomato roots, stems and leaves de- clined significantly from plant flowering to fruiting, while the proportion of fruit dry weight in plant dry weight increased significantly, exceeding 60%. There was a strong linear relationship between dry matter production of tomato and effective cu- mulative temperature (sum of temperature higher than 10 ^(3) in the solar green- house, and the dry matter production was increased by about 0.73 g/m2 when the effective cumulative temperature was increased by one unit. The dry matter produc- tion of tomato plant also showed a strong linear relationship with photosynthetic ac- tive radiation (PAR) in the greenhouse, and about 3.4 g of dry matter was synthe- sized per unit (M J) of PAR. [Conclusion] Extending the growing period and improv- ing the temperature and light conditions could increase the dry matter production of tomato.
基金funded by the National Key Research and Development Program of China (2017YFD0200106)
文摘In order to completely evaluate ammonia emission from greenhouse vegetable fields,crop canopy absorption should not be neglected.The foliar uptake of NH3 applied at two growth stages and the subsequent 15N-labeled N translocation to other plant components were investigated under greenhouse conditions using chambers covered with the soil of a tomato field.Treatments comprised three NH3-N application rates(70,140,and 210 mg/plot) using 15N-labeled ammonium sulfate.Plants were harvested immediately after exposure for 24 h,and the total N concentrations and 15N/14 N ratios were determined.With increased NH3 concentration,total 15NH3-N absorption increased considerably,whereas the applied 15NH3-N uptake decreased gradually.The tomato plants absorbed 33-38% and 24-31% of the 15NH3-N generated at the anthesis and fruit growth stages,respectively.A total of 71-80% of the recovered NH3 was observed in the leaves and 20-30% of the recovered NH3 was remobilized to other components.Among them,an average of 10% of the absorbed 15NH3-N was transferred into the tomato fruits.All these results indicated the potential of the tested tomatoes for the foliar uptake of atmospheric 15NH3 and the distribution of 15N-labeled vegetative N among different plant components.The results are of great importance for the complete evaluation of nitrogen use efficiency in the greenhouse tomato fields.
基金Supported by the National High-tech Research and Development Program of China(2013AA102903)
文摘Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse tomato (Lycopersicum esculentum Mill.) to examine the effect of two bacterial strains, Bacillus subtilis (CGMCC 1.3343) and Pseudomonas fluorescens (CGMCC 1.1802), on tomato growth, gray mold disease control, catabolic and genetic microbial features of indigenous rhizosphere bacteria under lownitrogen conditions. A commercial inoculant (ETS) was also tested as a comparison. Both B. subtilis and P. fluorescens promoted growth and biomass of seedlings, while only B. subtilis was efficient in reducing gray mold incidence in greenhouse tomato. The two bacterial strains could colonization in tomato rhizosphere soil at the end of experiment (10 days after the last inoculation). Different AWCD trends and DGGE patterns were got in different bacterial treatments; however, analyses of microbial diversities showed that indigenous soil microbes did not seem to have significant differences at either the catabolic or genetic level among treatments. ETS, as a commercial microbial agent, promoted plant growth and gave a higher microbial diversity in rhizosphere soil.
基金supported by the National Natural Science Foundation of China (51309192)the National Key Research and Development Program of China (2016YFC0400201)the Fundamental Research Funds for the Central Universities, China (Z109021510)
文摘Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique. Four treatments, aerated deficit irrigation(AI1), non-aerated deficit irrigation(CK1), aerated full irrigation(AI2) and non-aerated full irrigation(CK2), were performed. The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation(P〈0.05). Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation. Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season(P〈0.05). A slight increase of CO2 emissions in the two seasons was observed under full irrigation(P〉0.05). There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season. Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment(P〈0.05). Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes. Soil temperature, soil moisture and NO3^- were the primary factors influencing N2O fluxes. Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields.
基金Supported by Yantai S&T Development Plan(2015YD014)
文摘[Objective]The aim was to explore the feasibility of applying oyster shell soil amendment for tomato production in order to determine proper quantity of the soil conditional.[Method]Field tests were performed to research effects of the soil conditioner on tomato yield,quality and soil p H.[Result]The results showed that tomato yield increased in the treatment groups with oyster shell soil amendment.The group SC50 increased the most by 16.5%than the control group.Based on normal fertilization,tomato growth was promoted by the soil amendment,and per tomato weight and lycopene content both improved during peak-fruiting period.Besides,soil p H value was enhanced by the soil amendment also.[Conclusion]It can be concluded that the effect was the best when soil conditioner was applied at 750 kg/hm2.
基金supported by the National High Technology Research and Development Program of China (Grant No 2006AA100202)the Foundation of Excellent Doctoral Dissertations of China (Grant No 200546)
文摘With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001) and cowpea (2004) crop evapotranspiration (ETc) in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants’ growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.
基金Supported by the President Fund of Tarim University(TDZKQN201706)
文摘With the implementation of the "13^(th) Five-Year Plan" to promote the border area and raise rural living standards, the Xinjiang Production and Construction Corps has paid more and more attention to the development of protected agriculture, which is needed for the comprehensive development and stability of the border groups. In this paper, the current status of greenhouse tomato production in Aksu of southern Xinjiang is analyzed and summarized, finding the following: the structure is not reasonable with poor performance; the soilless cultivation mode is gradually developed, and there are innovative forms; the fertilization structure is not reasonable and needs improvement; the technical level is low, and it needs to be upgraded. Therefore, to solve the various problems that exist at present, some efforts are needed achieve a better production model.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103039)Shandong Provincial Natural Science Foundation,China(ZR2013DQ023)+1 种基金Science and Technology Development Plan Project of Shandong Province(2013GNC11204)Major Agricultural Application Technology Innovation Project of Shandong Province(Study on Environmental Regulation and Fertilizer Application Techniques for High Yield and High Efficiency Utilization of Greenhouse Tomato)~~
文摘To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.
文摘为了实现大棚环境中番茄的智能在线产量估算,提出了一种基于改进的YOLOv5(You Only Look Once v5)番茄识别算法,对自然生长状态下的番茄果实产量进行统计和估算。首先,使用可分离视觉转换器(Separable Vision Transformer,SepViT)替换骨干网络的最后一层,以增强骨干网络与全局信息之间的联系并提取番茄特征;其次,引入WIOU(Wise Intersection over Union)损失函数和Mish激活函数,以提高收敛速度和精度。试验结果表明,改进后的检测模型在平均精度(mean Average Precision,mAP)方面达到了99.5%,相较传统的YOLOv5模型提高了1.1个百分点,每张图像的处理时间为15 ms。此外,改进后的YOLOv5算法对密集和遮挡情况下的番茄果实识别效果更好。
文摘This study was conducted to study the optimum dosage of potassium ful- vate (PF) on greenhouse tomato, the effects of different amounts of PF on yield and quality of greenhouse tomato and soil physical and chemical properties were investigated by a field plot experiment. The results showed that the bottom applica- tion of PF increased tomato yield, plant dry matter weight and root dry matter weight by 14.0%, 14.4 and 50.6%, respectively; Vc and soluble sugar content of tomato increased by 1&5% and 10.0%, respectively; and soil bulk density de- creased by 3.6%, and CEC increased by 5.0%. All the indexes increased with the increase of PF application amount, and reached the maximum value when the PF application rate was 4 500 kg/hm2. In consideration of the cost of fertilizer and all indexes, the optimum dosaqe of PF fertilizer was 4 500 kg/hm2.