The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting pla...The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting platforms to realize fast, accurate solutions. Wire, surface and junction basis functions are used to model the current distribution on the object. Application of MLFMA reduces memory requirement and computing time compared to conventional methods, such as method of moment (MOM), especially for the antenna on a large-sized platform. Generalized minimal residual (GMRES) solver with incomplete LU factorization preconditioner using a dual dropping strategy (ILUT) is applied to reduce the iterative number. Several typical numerical examples are presented to validate this algorithm and show the accuracy and computational efficiency.展开更多
This paper introduces the principle of the multi-level method of moments (MoM) and its application in the analysis of the wire-antenna arrays. The multi-level MoM broadens the usage of the iterative methods in the MoM...This paper introduces the principle of the multi-level method of moments (MoM) and its application in the analysis of the wire-antenna arrays. The multi-level MoM broadens the usage of the iterative methods in the MoM. Our numerical results show that when applying it to the wire-antenna array analysis with the consideration of the mutual coupling between elements, it can allow a rapid and accurate evaluation of the current distribution on the antennas, and the computational cost is less, especially when the number of antennas is large.展开更多
A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the me...A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method of time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.展开更多
Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, co...Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, conical angles, wire radius, etc. are investigated. The calculation and the experiment show that the designed wire conical antenna has the ultra-wideband property and can be used for the engineering.展开更多
基金This project was supported by the National Natural Science Foundation of China (60431010).
文摘The electric field integral equation (EFIE) combined with the multilevel fast multipole algorithm (MLFMA) is applied to analyze the radiation and impedance properties of wire antennas mounted on complex conducting platforms to realize fast, accurate solutions. Wire, surface and junction basis functions are used to model the current distribution on the object. Application of MLFMA reduces memory requirement and computing time compared to conventional methods, such as method of moment (MOM), especially for the antenna on a large-sized platform. Generalized minimal residual (GMRES) solver with incomplete LU factorization preconditioner using a dual dropping strategy (ILUT) is applied to reduce the iterative number. Several typical numerical examples are presented to validate this algorithm and show the accuracy and computational efficiency.
文摘This paper introduces the principle of the multi-level method of moments (MoM) and its application in the analysis of the wire-antenna arrays. The multi-level MoM broadens the usage of the iterative methods in the MoM. Our numerical results show that when applying it to the wire-antenna array analysis with the consideration of the mutual coupling between elements, it can allow a rapid and accurate evaluation of the current distribution on the antennas, and the computational cost is less, especially when the number of antennas is large.
文摘A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method of time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.
基金the Natural Science Foundation Program of the Department of Education of Jiangsu Province (No. 05KJD510248)
文摘Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, conical angles, wire radius, etc. are investigated. The calculation and the experiment show that the designed wire conical antenna has the ultra-wideband property and can be used for the engineering.