In the wire bonding process of microelectronic packaging,heat affect zone(HAZ)is an important factor governing the loop profile of bonding.The height of loop is affected by the length of the HAZ.Factors governing the ...In the wire bonding process of microelectronic packaging,heat affect zone(HAZ)is an important factor governing the loop profile of bonding.The height of loop is affected by the length of the HAZ.Factors governing the HAZ were studied.To investigate this relationship,experiments were done for various sizes of wire and free air ball(FAB).Electric flame-off(EFO)current, EFO time,EFO gap and recrystallization were also studied.The results show that as the size of FAB becomes larger,the length of HAZ increases.With the increase of EFO current and time,the length of HAZ becomes longer.When FAB forms at the same parameter the length of HAZ becomes shorter with the high temperature of recrystallization.展开更多
Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been c...Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been completely evaluated.Therefore,fundamental research is still needed.In this study,the mechanism of microweld formation and breakage during Cu-Cu wire bonding was investigated by using molecular dynamics simulation.The contact model for the nanoindentation process between the wire and substrate was developed to simulate the contact process of the Cu wire and Cu substrate.Elastic contact and plastic instability were investigated through the loading and unloading processes.Moreover,the evolution of the indentation morphology and distributions of the atomic stress were also investigated.It was shown that the loading and unloading curves do not coincide,and the unloading curve exhibited hysteresis.For the substrate,in the loading process,the main force changed from attractive to repulsive.The maximum von Mises stress increased and shifted from the center toward the edge of the contact area.During the unloading process,the main force changed from repulsive to attractive.The Mises stress reduced first and then increased.Stress concentration occurs around dislocations in the middle area of the Cu wire.展开更多
An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic inte...An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.展开更多
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim...Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.展开更多
Wire bonding is one of the main processes of the LED packaging which provides electrical interconnec- tion between the LED chip and lead frame. The gold wire bonding process has been widely used in LED packaging indus...Wire bonding is one of the main processes of the LED packaging which provides electrical interconnec- tion between the LED chip and lead frame. The gold wire bonding process has been widely used in LED packaging industry currently. However, due to the high cost of gold wire, copper wire bonding is a good substitute for the gold wire bonding which can lead to significant cost saving. In this paper, the copper and gold wire bonding processes on the high power LED chip are compared and analyzed with finite element simulation. This modeling work may provide guidelines for the parameter optimization of copper wire bonding process on the high power LED packaging.展开更多
Eleven groups of wire bonding experiments are carried out on an experiment platform (restructured with a U3000 heavy aluminum wedge wire bonder). Pure silicon aluminum wire (300 μm in diameter, 2.94-3.92 N in aver...Eleven groups of wire bonding experiments are carried out on an experiment platform (restructured with a U3000 heavy aluminum wedge wire bonder). Pure silicon aluminum wire (300 μm in diameter, 2.94-3.92 N in average pull force) and nickel coated aluminum substrates are used in the experiments. During the experiment process, only ultrasonic power rate parameter is changed and the other bonding parameters are kept as constant, The bonding force and time are 4.90 N and 100 ms respectively. After the bonding experiments, shear strength tests are carried out on the bonds as the bonding strength criterion. From those experiments and test results, some conclusions are obtained: In the small ultrasonic power rate conditions (about 20%-30%), with the power increasing, the bonding strength enhances accordingly; However, in the large ultrasonic power rate conditions (about 45%-70%), the bonding strength decreases accordingly and over bonding happens. Only when the ultrasonic power rate is in a moderate condition (about 35%-40%) can good and stabilized bonding strength be acquired.展开更多
The physical and technological aspects of wire ball-wedge bonding in the assembly of integrated circuits are considered.The video camera and the pattern recognition system(PRS)of new bonder helps to provide accurate p...The physical and technological aspects of wire ball-wedge bonding in the assembly of integrated circuits are considered.The video camera and the pattern recognition system(PRS)of new bonder helps to provide accurate positioning of the bonding tool on the chip pads of integrated circuits.The formation of the loop wire cycle is ensured by the synchronous movement of the bonding head along the Z axis and the working table along the XY axes based on the servo drive.A feature of the bonder is that it can bond all the wire loops of the electronic device according to the pre-recorded program without needing to align the bonding points.展开更多
Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diamete...Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the ef/~cient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.展开更多
Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation ...Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.展开更多
Photonic integrated circuits(PICs)have long been considered as disruptive platforms that revolutionize optics.Building on the mature industrial foundry infrastructure for electronic integrated circuit fabrication,the ...Photonic integrated circuits(PICs)have long been considered as disruptive platforms that revolutionize optics.Building on the mature industrial foundry infrastructure for electronic integrated circuit fabrication,the manufacturing of PICs has made remarkable progress.However,the packaging of PICs has often become a major barrier impeding their scalable deployment owing to their tight optical alignment tolerance,and hence,the requirement for specialty packaging instruments.Two-photon lithography(TPL),a laser direct-write three-dimensional(3-D)patterning technique with deep subwavelength resolution,has emerged as a promising solution for integrated photonics packaging.This study provides an overview of the technology,emphasizing the latest advances in TPL-enabled packaging schemes and their prospects for adoption in the mainstream photonic industry.展开更多
To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as...To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as the output-stage inductor.Compared with the on-chip inductors in a CMOS process,the merit of the bondwire inductor is its high quality factor,leading to a higher output power and efficiency.The disadvantage of the bondwire inductor is that it is hard to control.A highly integrated class-E PA is implemented with 0.18-μm CMOS process.It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm.The maximum power-added efficiency(PAE) is 32.1%.Also,the spectral performance of the PA is analyzed for the specified RFID protocol.展开更多
基金Project(50705027)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z315)supported by the National High-Tech Research and Development Program of China。
文摘In the wire bonding process of microelectronic packaging,heat affect zone(HAZ)is an important factor governing the loop profile of bonding.The height of loop is affected by the length of the HAZ.Factors governing the HAZ were studied.To investigate this relationship,experiments were done for various sizes of wire and free air ball(FAB).Electric flame-off(EFO)current, EFO time,EFO gap and recrystallization were also studied.The results show that as the size of FAB becomes larger,the length of HAZ increases.With the increase of EFO current and time,the length of HAZ becomes longer.When FAB forms at the same parameter the length of HAZ becomes shorter with the high temperature of recrystallization.
基金the National Key R&D Program of China(Grant No.2019YFB1704600)the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032).
文摘Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been completely evaluated.Therefore,fundamental research is still needed.In this study,the mechanism of microweld formation and breakage during Cu-Cu wire bonding was investigated by using molecular dynamics simulation.The contact model for the nanoindentation process between the wire and substrate was developed to simulate the contact process of the Cu wire and Cu substrate.Elastic contact and plastic instability were investigated through the loading and unloading processes.Moreover,the evolution of the indentation morphology and distributions of the atomic stress were also investigated.It was shown that the loading and unloading curves do not coincide,and the unloading curve exhibited hysteresis.For the substrate,in the loading process,the main force changed from attractive to repulsive.The maximum von Mises stress increased and shifted from the center toward the edge of the contact area.During the unloading process,the main force changed from repulsive to attractive.The Mises stress reduced first and then increased.Stress concentration occurs around dislocations in the middle area of the Cu wire.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0704402,2018YFB2201801,2018YFE0201200,and 2020YFB2205800)National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.
基金Intelligent Manufacturing and Robot Technology Innovation Project of Beijing Municipal Commission of Science and Technology and Zhongguancun Science and Technology Park Management Committee,Grant/Award Number:Z221100000222016National Natural Science Foundation of China,Grant/Award Number:62076014Beijing Municipal Education Commission and Beijing Natural Science Foundation,Grant/Award Number:KZ202010005004。
文摘Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.
基金Project supported by the National Natural Science Foundation of China(Nos.50876038,50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘Wire bonding is one of the main processes of the LED packaging which provides electrical interconnec- tion between the LED chip and lead frame. The gold wire bonding process has been widely used in LED packaging industry currently. However, due to the high cost of gold wire, copper wire bonding is a good substitute for the gold wire bonding which can lead to significant cost saving. In this paper, the copper and gold wire bonding processes on the high power LED chip are compared and analyzed with finite element simulation. This modeling work may provide guidelines for the parameter optimization of copper wire bonding process on the high power LED packaging.
基金This project is supported by National Natural Science Foundation of China (No.50390064)National Basic Research Program of China(973 Program,No.2003CB716202).
文摘Eleven groups of wire bonding experiments are carried out on an experiment platform (restructured with a U3000 heavy aluminum wedge wire bonder). Pure silicon aluminum wire (300 μm in diameter, 2.94-3.92 N in average pull force) and nickel coated aluminum substrates are used in the experiments. During the experiment process, only ultrasonic power rate parameter is changed and the other bonding parameters are kept as constant, The bonding force and time are 4.90 N and 100 ms respectively. After the bonding experiments, shear strength tests are carried out on the bonds as the bonding strength criterion. From those experiments and test results, some conclusions are obtained: In the small ultrasonic power rate conditions (about 20%-30%), with the power increasing, the bonding strength enhances accordingly; However, in the large ultrasonic power rate conditions (about 45%-70%), the bonding strength decreases accordingly and over bonding happens. Only when the ultrasonic power rate is in a moderate condition (about 35%-40%) can good and stabilized bonding strength be acquired.
基金The 2019 Ministry of Education industry-university cooperation collaborative education project“Research on the Construction of Economics and Management Professional Data Analysis Laboratory”(Project number:201902077020)。
文摘The physical and technological aspects of wire ball-wedge bonding in the assembly of integrated circuits are considered.The video camera and the pattern recognition system(PRS)of new bonder helps to provide accurate positioning of the bonding tool on the chip pads of integrated circuits.The formation of the loop wire cycle is ensured by the synchronous movement of the bonding head along the Z axis and the working table along the XY axes based on the servo drive.A feature of the bonder is that it can bond all the wire loops of the electronic device according to the pre-recorded program without needing to align the bonding points.
文摘Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the ef/~cient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.
基金entirely funded by the University Medical Centre Groningen, Groningen, The NetherlandsOpen Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.
基金S.Y.and Q.D.acknowledge funding support from the National Key R&D Program of China 2021ZD0109904the Key Research Project of Zhejiang Lab No.2022PH0AC03.C.R.M.acknowledges the funding support provided by the Fulbright Program.
文摘Photonic integrated circuits(PICs)have long been considered as disruptive platforms that revolutionize optics.Building on the mature industrial foundry infrastructure for electronic integrated circuit fabrication,the manufacturing of PICs has made remarkable progress.However,the packaging of PICs has often become a major barrier impeding their scalable deployment owing to their tight optical alignment tolerance,and hence,the requirement for specialty packaging instruments.Two-photon lithography(TPL),a laser direct-write three-dimensional(3-D)patterning technique with deep subwavelength resolution,has emerged as a promising solution for integrated photonics packaging.This study provides an overview of the technology,emphasizing the latest advances in TPL-enabled packaging schemes and their prospects for adoption in the mainstream photonic industry.
文摘To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as the output-stage inductor.Compared with the on-chip inductors in a CMOS process,the merit of the bondwire inductor is its high quality factor,leading to a higher output power and efficiency.The disadvantage of the bondwire inductor is that it is hard to control.A highly integrated class-E PA is implemented with 0.18-μm CMOS process.It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm.The maximum power-added efficiency(PAE) is 32.1%.Also,the spectral performance of the PA is analyzed for the specified RFID protocol.