A simple methodology has been developed for the synthesis of highlyβ-selective O-glycosylation scaffolds of wider substrate scope under mild conditions using a self-assembled hexameric capsule.The reaction conditions...A simple methodology has been developed for the synthesis of highlyβ-selective O-glycosylation scaffolds of wider substrate scope under mild conditions using a self-assembled hexameric capsule.The reaction conditions are compatible with a wide range of functional groups.Extensive control experiments and theoretical studies established that the reaction takes place inside the capsule cavity.The substrates are activated via a proton wire as seen in some enzymes,and the reactions follow an SN2 pathway through a loose transition state.The advantages of this methodology are selectivity,high yields and scalability;the catalyst is readily recovered and reused.The methodology was adapted to the synthesis of mesomorphic glycosides and anti-tumour agents in short synthetic routes.展开更多
The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the w...The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.展开更多
With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a ...With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model.展开更多
This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom ...This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.展开更多
In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined co...In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.22071144 and 21801164)by Shanghai Scientific and Technological Committee(No.22010500300).
文摘A simple methodology has been developed for the synthesis of highlyβ-selective O-glycosylation scaffolds of wider substrate scope under mild conditions using a self-assembled hexameric capsule.The reaction conditions are compatible with a wide range of functional groups.Extensive control experiments and theoretical studies established that the reaction takes place inside the capsule cavity.The substrates are activated via a proton wire as seen in some enzymes,and the reactions follow an SN2 pathway through a loose transition state.The advantages of this methodology are selectivity,high yields and scalability;the catalyst is readily recovered and reused.The methodology was adapted to the synthesis of mesomorphic glycosides and anti-tumour agents in short synthetic routes.
文摘The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.
文摘With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model.
基金supported by the National High Technology Research and Development Programme of China(2006AA04Z255)the 111 Project(B307018)
文摘This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.
基金supported by the National Natural Science Foundation of China(No.51501047)China Postdoctoral Science Foundation(No.2016M590280)the Fundamental Research Funds for the Central Universities(Nos.HIT.NSRIF.20161,HIT.MKSTISP.201615)
文摘In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.