Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality...Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.展开更多
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples...The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s...Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.展开更多
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i...Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.展开更多
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph...NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major rea...In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major reason for this is the possibility of producing parts with a complex geometry as well as a fine-grained microstructure.While the process has been shown to be applicable for Mg-Al-Zn alloys,there is still a lack of knowledge in terms of the influence of the WAAM process on the age-hardening response.Consequently,this study deals with the aging response of a WAAM AZ91 alloy.In order to fully understand the mechanisms during aging,first,the as-built condition was analyzed by means of high-energy X-ray diffraction(HEXRD)and scanning electron microscopy.These investigations revealed a finegrained,equiaxed microstructure with adjacent areas of alternating Al content.Subsequently,the difference between single-and double-step aging as well as conventional and direct aging was studied on the as-built WAAM AZ91 alloy for the first time.The aging response during the various heat treatments was monitored via in situ HEXRD experiments.Corroborating electron microscopy and hardness studies were conducted.The results showed that the application of a double-step aging heat treatment at 325℃with pre-aging at 250℃slightly improves the mechanical properties when compared to the single-step heat treatment at 325℃.However,the hardness decreases considerably after the pre-aging step.Thus,aging at lower temperatures is preferable within the investigated temperature range of 250-325℃.Moreover,no significant difference between the conventionally aged and directly aged samples was found.Lastly,the specimens showed enhanced precipitation kinetics during aging as compared to cast samples.This could be attributed to a higher amount of nucleation sites and the particular temperature profile of the solution heat treatment.展开更多
Laser Directed Energy Deposition (LDED) marks a critical advance in intelligent manufacturing, enabling efficient near-net shape production of metal parts. This method is especially beneficial for aerospace and defens...Laser Directed Energy Deposition (LDED) marks a critical advance in intelligent manufacturing, enabling efficient near-net shape production of metal parts. This method is especially beneficial for aerospace and defense applications that require high precision. However, issues such as deformation and heat accumulation during production still affect the quality of the final products, necessitating further optimization of process parameters. This paper studies the effects of three deposition strategies on 316L stainless steel parts using LDED. The three strategies based on unidirectional scanning (US), zigzag scanning (ZS), and square spiral scanning (SS) are investigated by solid samples and samples with a central hole. The surface smoothness, defects, and mechanical properties of 316L samples manufactured with the above strategies are discussed by means of surface topography tests and metallographic characterization. Experimental results indicate that the zigzag scanning strategy yielded better results for solid components, and the square spiral scanning strategy is suitable for samples with a central hole.展开更多
The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was design...The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was designed and incorporated to a DED system in order to control the temperature gradient along the deposition direction during solidification.During deposition,the workpiece was placed on a lifting platform,and as the deposition process proceeded,the platform and workpiece were gradually lowered into cooling water so that the temperature gradient along the deposition direction could be controlled and maintained stable during the deposition process.The microstructure characterization results indicated that a deposition strategy with higher G and G/R values(where G is temperature gradient and R is solidification rate)produced finer cellular grains that were better aligned with the deposition direction,while a deposition strategy with lower G and G/R values produced columnar grains with larger primary arm spacing and less aligned with the deposition direction.展开更多
Porosity is a common phenomenon and can significantly hinder the quality of the coating.Here,the pore formation mechanism and the characteristics of the single tracks of the W-C coating using directed energy depositio...Porosity is a common phenomenon and can significantly hinder the quality of the coating.Here,the pore formation mechanism and the characteristics of the single tracks of the W-C coating using directed energy deposition(DED)are systematically investigated.The forming quality of the tracks,the distribution of the pores,and the elemental distribution near the pores are analyzed by the observations of the cross-sections of the tracks.The temperature field of the melt pool is discussed comprehensively to reveal the pore formation mechanism.The results confirm that Ni and Co evaporated during the DED process due to the high temperature of the melt pool.Pores were continuously produced adjacent to the fusion line when the melt pool was about to solidify since the temperature at the solidification front was higher than the boiling point of Ni.The vaporization area at the fusion line was proposed,where Ni could also evaporate at the time the melt pool started to solidify.The relationship between the solidification rate,the size of the vaporization area and the DED parameters(laser power and scanning speed)was established to discuss the causes of severe pores above the fusion line.This work contains a practical guide to reduce or eliminate the porosity in the coating preparation process on the surface of the tungsten alloy.展开更多
Thin-wall structures of Ti-6A1-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward...Thin-wall structures of Ti-6A1-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward the top of melt pool tail. This resulted in a microstructure mainly composed of long and thin prior epitaxial β columnar grains (average width ^200μm). A periodic pattern in epitaxial growth of grains was observed, which was shown to depend upon laser traverse direction. Utilizing this, a novel means was proposed to determine accurately the fusion boundary of each deposited layer by inspection of the periodic wave patterns. As a result it was applied to investigate the influence of thermal cycling on microstructure evolution. Results showed that acicular martensite,α' phase, and a small amount of Widmanstatten, a laths, gradually converted to elongated acicular a and a large fraction of Widmanstatten a laths under layer-wise thermal cycling. Tensile tests showed that the yield strength, ultimate tensile strength and elongation of Ti-6Al-4V thin wall in the build direction were 9.1 %, 17.3% and 42% higher respectively than those typically observed in forged solids of the same alloy. It also showed the yield strength and ultimate tensile strength of the transverse tensile samples both were 13.3% higher than those from the build direction due to the strengthening effect of a large number of vertical β grain boundaries, but the elongation was 69.7% lower than that of the build direction due to the uneven grain deformation of β grains.展开更多
The control of grain morphology is important in laser additive manufacturing(LAM),as grain morphology further affects the hot cracking resistance,anisotropy,and strength–ductility synergy of materials.To develop a so...The control of grain morphology is important in laser additive manufacturing(LAM),as grain morphology further affects the hot cracking resistance,anisotropy,and strength–ductility synergy of materials.To develop a solidification-control solution and achieve columnar-to-equiaxed transition(CET)in Al-based alloys during LAM,Sc-and-Zr-modified Al-Mg alloys were processed via directed energy deposition(DED).CET was achieved by introducing high potent primary Al_(3)(Sc,Zr)nucleation sites ahead of the solidification interface.Furthermore,the relationship between the solidification control parameters and precipitation behavior of primary Al_(3)(Sc,Zr)nucleation sites was established using the time-dependent nucleation theory.Then,the CET was studied according to the Hunt criterion.The results indicated that coarse columnar grain structure was still obtained at the inner region of the molten pool at low Sc/Zr contents owing to the effective suppression of the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites via rapid solidification during DED.In addition,the relatively low melt temperature at the fusion boundary unavoidably promoted the precipitation of primary Al_(3)(Sc,Zr)nucleation sites,which resulted in a fine equiaxed grains band at the edge of the molten pool.As the Sc/Zr content increased,the solidification cooling rate was not sufficient to suppress the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites,and a fully equiaxed grain structure was obtained.Furthermore,the effect of the layer-by-layer manufacturing process on the subsequent precipitation strengthening of secondary Al_(3)(Sc,Zr)precipitates was discussed.Both the remelting and subsequent aging during thermal cycling should be considered to achieve greater precipitation strengthening.展开更多
In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed ener...In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed energy deposition(DED).The microstructure,defects and mechanical properties of the cladding layers treated by UMFT with different ultrasonic powers(UIPs)were investigated.Results revealed a gradient structure as equiaxed grains distributed at the top,a columnar-to-equiaxed transition(CET)region that mixed of columnar dendrites and equiaxed grains distributed at the middle and columnar dendrites at the bottom of the cladding layer was formed.After UMFT,the proportion of equiaxed grains was increased,the average size of equiaxed grains was refined to 10μm from 16μm,the orientation of grains was more uniform and the phases enriched of Al,Ti,C,Nb and Mo were precipitated.The grain refinement can be attributed to the fracture of columnar dendrites induced by the ultrasonic vibration during solidification.Besides,the porosity of the cladding layer was reduced after UMFT.The microhardness of the cladding layers exhibited a depth-dependent gradient at the top region.The microhardness of the top surface was the highest and showed an increasing trend with the increase of UIP.The microhardness of different grain morphologies exhibited no substantial difference.However,due to grain refinement and precipitation of strengthening phase induced by UMFT,the microhadness of some local locations were improved.These results indicated UMFT has a significant effect on improving the microstructure,defects and mechanical properties of the deposited cladding layer.展开更多
Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the m...Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the microstructural features of a Ti-6 Al-4 V alloy manufactured via high power laser directed energy deposition subjected to low-cycle fatigue loading were studied.Before fatigue loading,the microstructure of the as-deposited parts was found to exhibit a non-homogeneous distribution of columnar prior-βgrains(200-4000μm)at various scanning velocities(300-1500 mm/min)and relatively coarseα-laths(1.0-4.5μm).Under cyclic loading,fatigue microcracks typically initiated within the alignedαphases in the preferred orientation(45°to the loading direction)at the surface of the fatigue specimens.Fatigued Ti-6 Al-4 V exhibited a single straight dislocation character at low strain amplitudes(<0.65%)and dislocation dipoles or even tangled dislocations at high strain amplitudes(>1.1%).In addition,dislocation substructure features,such as dislocation walls,stacking faults,and dislocation networks,were also observed.These findings may provide opportunities to understand the fatigue failure mechanism of additive manufactured titanium parts.展开更多
Combining dissimilar materials in a single component is an effective solution to integrate diverse material properties into a single part.Copper-stainless steel hybrid components are attracting more and more attention...Combining dissimilar materials in a single component is an effective solution to integrate diverse material properties into a single part.Copper-stainless steel hybrid components are attracting more and more attention since the high thermal conductivity of copper can greatly enhance the thermal performance of stainless steel,which benefits its applications in many industries.However,direct joining of copper and stainless steel such as SS316 L is challenging since they preserve significant dissimilarities in physical,chemical,and thermo-mechanical properties.This paper aims to fabricate well-bonded copper-SS316 L hybrid parts using a laser-aided directed energy deposition(DED) process.A nickel-based alloy Deloro22(D22) is introduced between copper and SS316 L to address the detrimental issues in copper-SS316 L direct joints.Using this technique,defect-free interfaces are achieved at both the D22-SS316 L and copper-D22 transition zones.Tensile testing of Cu-D22-SS316 L and D22-SS316 L hybrid parts shows the fracture occurs at pure copper and SS316 L region,respectively,indicating an excellent bonding at the interfaces.Ascending in the building direction,a transition of grain structure is observed.A significant diffusion zone is obtained at both the D22-SS316 L and the Cu-D22 interfaces.The large diffusion distance results in a smooth variation in microhardness over the dissimilar materials.The microhardness increases from SS316 L to D22 with the highest value of 240 HV and then decreases from D22 to Cu with the lowest value of 63 ± 4 HV.Testing of thermophysical properties of the Cu-D22-SS316 L system indicates there is a ~300 % increase in thermal diffusivity and a ~200 % increase in thermal conductivity when compared to pure SS316 L.The significant increase in thermal diffusivity and conductivity validates the enhanced thermal performance of SS316 L when it is joined with pure copper.展开更多
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d...Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.展开更多
Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional ...Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional accuracy and surface quality of the metallic component.A novel hybrid additive manufacturing technology by combining the benefit of directed energy deposition and laser remelting is developed.This hybrid technology is successfully utilized to fabricate 316L component with excellent surface quality.Results show that laser remelting can largely increase the amount ofδphases and eliminateσphases in additive manufacturing 316L component surface due to the rapid cooling.This leads to the formation of remelting layer with higher microhardness and excellent corrosion resistance when compared to the steel made by directed energy deposition only.Increasing laser remelting power can improve surface quality as well as corrosion resistance,but degrade microhardness of remelting layer owing to the decrease inδphases.展开更多
Copper/steel is a typical bimetal functional material,combining the excellent electrical and thermal conductivity of copper alloy and the high strength and hardness of stainless steel.There has been recent interest in...Copper/steel is a typical bimetal functional material,combining the excellent electrical and thermal conductivity of copper alloy and the high strength and hardness of stainless steel.There has been recent interest in manufacturing copper/steel bimetal by directed energy deposition(DED)due to its layer-bylayer method.However,cracks tend to form on the copper/steel interface because of the great difference in thermal expansion coefficient and crystal structure between copper and steel.In this work,interfacial characteristics and mechanical properties of the copper/steel bimetal were studied from one layer to multilayers.The laser power has a great influence on the Cu element distribution of the molten pool,affecting the crack formation dramatically on the solidification stage.Cracks tend to form along columnar grain boundaries because of the Cu-rich liquid films and spherical particles in the cracks.Crack-free and good metallurgical bonding copper/steel interface is formed at a scanning velocity of 800 mm/min and the laser power of 3000 W.The ultimate tensile strength(UTS)and the break elongation(EL)of the vertically combined crack-free copper/steel bimetal are 238.2±4.4 MPa and 20.6±0.7%,respectively.The fracture occurs on the copper side instead of the copper/steel interface,indicating that the bonding strength is higher than that of the Cu-Cr alloy.The UTS of the horizontally combined crack-free copper/steel bimetal is 746.7±22.6 MPa,which is 200%higher than that of the Cu-Cr alloy substrate.The microhardness is 398.6±5.4 HV at the steel side and is 235.3±64.1 HV at the interface,which is400%higher than that of the Cu-Cr alloy substrate.This paper advances the understanding of the interfacial characteristics of heterogeneous materials and provides guidance and reference for the fabrication of multi-material components by DED.展开更多
A common challenge in direct energy deposition(DED)is eliminating the anisotropy in mechanical performance associated with microstructure and the formation of coarse columnar grains.In this work,a heterogeneous nuclea...A common challenge in direct energy deposition(DED)is eliminating the anisotropy in mechanical performance associated with microstructure and the formation of coarse columnar grains.In this work,a heterogeneous nucleation mechanism was introduced into the melt pool,and,from this mechanism,an almost fully equiaxed grain morphology was obtained in the DED of Ti-6 Al-3 Mo.Three types of grain morphologies in DED Ti-6 Al-3 Mo,including full columnar grains,near-equiaxed grains and almost fully equiaxed grains were obtained from premixed and satellite powder blends from Ti,6 wt.%Al and 3 wt.%Mo,respectively.Combined with the analysis of the interactions between powder particles and the melt pool in DED,the formation mechanism of the equiaxed grains caused by the incomplete melting of high melting point Mo particles was revealed.As the prior-βgrains transformed from coarse columnar grains to fine-equiaxed grains,the strong<100>fiber texture along the deposition direction was weakened,while the size of theα-laths in the prior-βgrains slightly decreased,and the selection ofα-variants was weakened.Due to the transformation of the prior-βgrains from coarse columnar grains to fine-equiaxed grains,the tensile strength of the deposited samples increased from 982 MPa to 1082 MPa,while the yield strength increased from 840 MPa to 922 MPa,and the elongation of the as-deposited alloy also increased from 9.0%to 9.8%,which confirmed that the presence of fine-equiaxed grains is beneficial to the strength and plasticity of the DED alloy.This work further demonstrates the role that satelliting powders can play in terms of enhancing the columnar to equiaxed transition(CET)behavior associated with DED.展开更多
基金supported by the National Natural Science Foundation of China(51975112,52375412)Fundamental Research Funds for Central Universities(N2203011)。
文摘Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.
基金financial support of the National Natural Science Foundation of China(Nos.52130110 and U22A20189)the Research Fund of the State Key Laboratory of Solidification Processing(No.2023-TS-10)。
文摘The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金the financial support by the Defense Industrial Technology Development Program(No.JCKY2020130C024)the National Science and Technology Major Project,China(No.Y2019-Ⅶ-0011-0151)the Science Center for Gas Turbine Project(No.P2022-C-Ⅳ-002-001)。
文摘Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.
基金National Natural Science Foundation of China (52275374, 52205414)Xi’an Jiaotong University Basic Research Funds for Freedom of Exploration and Innovation-Student Programs (xzy022023066)+3 种基金Key Research and Development Projects of Shaanxi Province (2023-YBGY-361)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)State Key Laboratory for Mechanical Behavior of Materials (20212311)Xiaomi Foundation through Xiaomi Young Scholar Program
文摘Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.
基金Project(2020JJ2046)supported by the Science Fund for Hunan Distinguished Young Scholars,ChinaProject(S2020GXKJGG0416)supported by the Special Project for Hunan Innovative Province Construction,China+1 种基金Project(2018RS3007)supported by the Huxiang Young Talents,ChinaProject(GuikeAB19050002)supported by the Science Project of Guangxi,China。
文摘NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020the financial support of the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant No.771146 TOUGHIT)funded within the AIT’s strategic research portfolio 2022 and by the European Commission within the framework INTERREG V-A Austria–Czech Republic in the project“ReMaP“(Interreg project no.ATCZ229)。
文摘In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major reason for this is the possibility of producing parts with a complex geometry as well as a fine-grained microstructure.While the process has been shown to be applicable for Mg-Al-Zn alloys,there is still a lack of knowledge in terms of the influence of the WAAM process on the age-hardening response.Consequently,this study deals with the aging response of a WAAM AZ91 alloy.In order to fully understand the mechanisms during aging,first,the as-built condition was analyzed by means of high-energy X-ray diffraction(HEXRD)and scanning electron microscopy.These investigations revealed a finegrained,equiaxed microstructure with adjacent areas of alternating Al content.Subsequently,the difference between single-and double-step aging as well as conventional and direct aging was studied on the as-built WAAM AZ91 alloy for the first time.The aging response during the various heat treatments was monitored via in situ HEXRD experiments.Corroborating electron microscopy and hardness studies were conducted.The results showed that the application of a double-step aging heat treatment at 325℃with pre-aging at 250℃slightly improves the mechanical properties when compared to the single-step heat treatment at 325℃.However,the hardness decreases considerably after the pre-aging step.Thus,aging at lower temperatures is preferable within the investigated temperature range of 250-325℃.Moreover,no significant difference between the conventionally aged and directly aged samples was found.Lastly,the specimens showed enhanced precipitation kinetics during aging as compared to cast samples.This could be attributed to a higher amount of nucleation sites and the particular temperature profile of the solution heat treatment.
文摘Laser Directed Energy Deposition (LDED) marks a critical advance in intelligent manufacturing, enabling efficient near-net shape production of metal parts. This method is especially beneficial for aerospace and defense applications that require high precision. However, issues such as deformation and heat accumulation during production still affect the quality of the final products, necessitating further optimization of process parameters. This paper studies the effects of three deposition strategies on 316L stainless steel parts using LDED. The three strategies based on unidirectional scanning (US), zigzag scanning (ZS), and square spiral scanning (SS) are investigated by solid samples and samples with a central hole. The surface smoothness, defects, and mechanical properties of 316L samples manufactured with the above strategies are discussed by means of surface topography tests and metallographic characterization. Experimental results indicate that the zigzag scanning strategy yielded better results for solid components, and the square spiral scanning strategy is suitable for samples with a central hole.
基金This work was supported by National Key R&D Program of China(Grant No.2022YFB4601000).
文摘The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was designed and incorporated to a DED system in order to control the temperature gradient along the deposition direction during solidification.During deposition,the workpiece was placed on a lifting platform,and as the deposition process proceeded,the platform and workpiece were gradually lowered into cooling water so that the temperature gradient along the deposition direction could be controlled and maintained stable during the deposition process.The microstructure characterization results indicated that a deposition strategy with higher G and G/R values(where G is temperature gradient and R is solidification rate)produced finer cellular grains that were better aligned with the deposition direction,while a deposition strategy with lower G and G/R values produced columnar grains with larger primary arm spacing and less aligned with the deposition direction.
文摘Porosity is a common phenomenon and can significantly hinder the quality of the coating.Here,the pore formation mechanism and the characteristics of the single tracks of the W-C coating using directed energy deposition(DED)are systematically investigated.The forming quality of the tracks,the distribution of the pores,and the elemental distribution near the pores are analyzed by the observations of the cross-sections of the tracks.The temperature field of the melt pool is discussed comprehensively to reveal the pore formation mechanism.The results confirm that Ni and Co evaporated during the DED process due to the high temperature of the melt pool.Pores were continuously produced adjacent to the fusion line when the melt pool was about to solidify since the temperature at the solidification front was higher than the boiling point of Ni.The vaporization area at the fusion line was proposed,where Ni could also evaporate at the time the melt pool started to solidify.The relationship between the solidification rate,the size of the vaporization area and the DED parameters(laser power and scanning speed)was established to discuss the causes of severe pores above the fusion line.This work contains a practical guide to reduce or eliminate the porosity in the coating preparation process on the surface of the tungsten alloy.
基金supported by the National Key Research and Development Program of China (No. 2018YFB1106302)the National Natural Science Foundation of China (Grant No. 51475380)the Aeronautical Science Foundation of China (Grant No. 2016ZE53)
文摘Thin-wall structures of Ti-6A1-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward the top of melt pool tail. This resulted in a microstructure mainly composed of long and thin prior epitaxial β columnar grains (average width ^200μm). A periodic pattern in epitaxial growth of grains was observed, which was shown to depend upon laser traverse direction. Utilizing this, a novel means was proposed to determine accurately the fusion boundary of each deposited layer by inspection of the periodic wave patterns. As a result it was applied to investigate the influence of thermal cycling on microstructure evolution. Results showed that acicular martensite,α' phase, and a small amount of Widmanstatten, a laths, gradually converted to elongated acicular a and a large fraction of Widmanstatten a laths under layer-wise thermal cycling. Tensile tests showed that the yield strength, ultimate tensile strength and elongation of Ti-6Al-4V thin wall in the build direction were 9.1 %, 17.3% and 42% higher respectively than those typically observed in forged solids of the same alloy. It also showed the yield strength and ultimate tensile strength of the transverse tensile samples both were 13.3% higher than those from the build direction due to the strengthening effect of a large number of vertical β grain boundaries, but the elongation was 69.7% lower than that of the build direction due to the uneven grain deformation of β grains.
基金the Project from the National Key Research and Development Program of China(Nos.2016YFB1100100 and 2018YFB1106300)。
文摘The control of grain morphology is important in laser additive manufacturing(LAM),as grain morphology further affects the hot cracking resistance,anisotropy,and strength–ductility synergy of materials.To develop a solidification-control solution and achieve columnar-to-equiaxed transition(CET)in Al-based alloys during LAM,Sc-and-Zr-modified Al-Mg alloys were processed via directed energy deposition(DED).CET was achieved by introducing high potent primary Al_(3)(Sc,Zr)nucleation sites ahead of the solidification interface.Furthermore,the relationship between the solidification control parameters and precipitation behavior of primary Al_(3)(Sc,Zr)nucleation sites was established using the time-dependent nucleation theory.Then,the CET was studied according to the Hunt criterion.The results indicated that coarse columnar grain structure was still obtained at the inner region of the molten pool at low Sc/Zr contents owing to the effective suppression of the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites via rapid solidification during DED.In addition,the relatively low melt temperature at the fusion boundary unavoidably promoted the precipitation of primary Al_(3)(Sc,Zr)nucleation sites,which resulted in a fine equiaxed grains band at the edge of the molten pool.As the Sc/Zr content increased,the solidification cooling rate was not sufficient to suppress the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites,and a fully equiaxed grain structure was obtained.Furthermore,the effect of the layer-by-layer manufacturing process on the subsequent precipitation strengthening of secondary Al_(3)(Sc,Zr)precipitates was discussed.Both the remelting and subsequent aging during thermal cycling should be considered to achieve greater precipitation strengthening.
基金supported by National Key Research and Development Program(No.2017YFB1103701)National Natural Science Foundation of China(No.51671101)+1 种基金Natural Science Foundation of Jiangxi Province(No.20171BCD40003)the Innovative Funding for Graduate Students in Nanchang University(No.CX2019068)。
文摘In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed energy deposition(DED).The microstructure,defects and mechanical properties of the cladding layers treated by UMFT with different ultrasonic powers(UIPs)were investigated.Results revealed a gradient structure as equiaxed grains distributed at the top,a columnar-to-equiaxed transition(CET)region that mixed of columnar dendrites and equiaxed grains distributed at the middle and columnar dendrites at the bottom of the cladding layer was formed.After UMFT,the proportion of equiaxed grains was increased,the average size of equiaxed grains was refined to 10μm from 16μm,the orientation of grains was more uniform and the phases enriched of Al,Ti,C,Nb and Mo were precipitated.The grain refinement can be attributed to the fracture of columnar dendrites induced by the ultrasonic vibration during solidification.Besides,the porosity of the cladding layer was reduced after UMFT.The microhardness of the cladding layers exhibited a depth-dependent gradient at the top region.The microhardness of the top surface was the highest and showed an increasing trend with the increase of UIP.The microhardness of different grain morphologies exhibited no substantial difference.However,due to grain refinement and precipitation of strengthening phase induced by UMFT,the microhadness of some local locations were improved.These results indicated UMFT has a significant effect on improving the microstructure,defects and mechanical properties of the deposited cladding layer.
基金supported by the National Key Research and Development Plan of China(2016YFB1100104)National Natural Science Foundation of China(Grant No.51971166)。
文摘Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the microstructural features of a Ti-6 Al-4 V alloy manufactured via high power laser directed energy deposition subjected to low-cycle fatigue loading were studied.Before fatigue loading,the microstructure of the as-deposited parts was found to exhibit a non-homogeneous distribution of columnar prior-βgrains(200-4000μm)at various scanning velocities(300-1500 mm/min)and relatively coarseα-laths(1.0-4.5μm).Under cyclic loading,fatigue microcracks typically initiated within the alignedαphases in the preferred orientation(45°to the loading direction)at the surface of the fatigue specimens.Fatigued Ti-6 Al-4 V exhibited a single straight dislocation character at low strain amplitudes(<0.65%)and dislocation dipoles or even tangled dislocations at high strain amplitudes(>1.1%).In addition,dislocation substructure features,such as dislocation walls,stacking faults,and dislocation networks,were also observed.These findings may provide opportunities to understand the fatigue failure mechanism of additive manufactured titanium parts.
基金supported by National Science Foundation Grants CMMI-1547042 and CMMI 1625736Intelligent Systems Center,Center for Aerospace Manufacturing TechnologiesMaterial Research Center at Missouri S&T。
文摘Combining dissimilar materials in a single component is an effective solution to integrate diverse material properties into a single part.Copper-stainless steel hybrid components are attracting more and more attention since the high thermal conductivity of copper can greatly enhance the thermal performance of stainless steel,which benefits its applications in many industries.However,direct joining of copper and stainless steel such as SS316 L is challenging since they preserve significant dissimilarities in physical,chemical,and thermo-mechanical properties.This paper aims to fabricate well-bonded copper-SS316 L hybrid parts using a laser-aided directed energy deposition(DED) process.A nickel-based alloy Deloro22(D22) is introduced between copper and SS316 L to address the detrimental issues in copper-SS316 L direct joints.Using this technique,defect-free interfaces are achieved at both the D22-SS316 L and copper-D22 transition zones.Tensile testing of Cu-D22-SS316 L and D22-SS316 L hybrid parts shows the fracture occurs at pure copper and SS316 L region,respectively,indicating an excellent bonding at the interfaces.Ascending in the building direction,a transition of grain structure is observed.A significant diffusion zone is obtained at both the D22-SS316 L and the Cu-D22 interfaces.The large diffusion distance results in a smooth variation in microhardness over the dissimilar materials.The microhardness increases from SS316 L to D22 with the highest value of 240 HV and then decreases from D22 to Cu with the lowest value of 63 ± 4 HV.Testing of thermophysical properties of the Cu-D22-SS316 L system indicates there is a ~300 % increase in thermal diffusivity and a ~200 % increase in thermal conductivity when compared to pure SS316 L.The significant increase in thermal diffusivity and conductivity validates the enhanced thermal performance of SS316 L when it is joined with pure copper.
基金supported by the National Key Technologies R&D Program (Nos. 2016YFB1100102, 2018YFB1106003).
文摘Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.
基金This work was supported by Beijing Municipal Science&Technology Program(Grant No.Z181100003318001).
文摘Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional accuracy and surface quality of the metallic component.A novel hybrid additive manufacturing technology by combining the benefit of directed energy deposition and laser remelting is developed.This hybrid technology is successfully utilized to fabricate 316L component with excellent surface quality.Results show that laser remelting can largely increase the amount ofδphases and eliminateσphases in additive manufacturing 316L component surface due to the rapid cooling.This leads to the formation of remelting layer with higher microhardness and excellent corrosion resistance when compared to the steel made by directed energy deposition only.Increasing laser remelting power can improve surface quality as well as corrosion resistance,but degrade microhardness of remelting layer owing to the decrease inδphases.
基金supported by the Human Spaceflight Program of China(D050302)the Military Industry Stability Support project(2019KGW.YY4007Tm)。
文摘Copper/steel is a typical bimetal functional material,combining the excellent electrical and thermal conductivity of copper alloy and the high strength and hardness of stainless steel.There has been recent interest in manufacturing copper/steel bimetal by directed energy deposition(DED)due to its layer-bylayer method.However,cracks tend to form on the copper/steel interface because of the great difference in thermal expansion coefficient and crystal structure between copper and steel.In this work,interfacial characteristics and mechanical properties of the copper/steel bimetal were studied from one layer to multilayers.The laser power has a great influence on the Cu element distribution of the molten pool,affecting the crack formation dramatically on the solidification stage.Cracks tend to form along columnar grain boundaries because of the Cu-rich liquid films and spherical particles in the cracks.Crack-free and good metallurgical bonding copper/steel interface is formed at a scanning velocity of 800 mm/min and the laser power of 3000 W.The ultimate tensile strength(UTS)and the break elongation(EL)of the vertically combined crack-free copper/steel bimetal are 238.2±4.4 MPa and 20.6±0.7%,respectively.The fracture occurs on the copper side instead of the copper/steel interface,indicating that the bonding strength is higher than that of the Cu-Cr alloy.The UTS of the horizontally combined crack-free copper/steel bimetal is 746.7±22.6 MPa,which is 200%higher than that of the Cu-Cr alloy substrate.The microhardness is 398.6±5.4 HV at the steel side and is 235.3±64.1 HV at the interface,which is400%higher than that of the Cu-Cr alloy substrate.This paper advances the understanding of the interfacial characteristics of heterogeneous materials and provides guidance and reference for the fabrication of multi-material components by DED.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB1100103)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-239)+2 种基金the National Natural Science Foundation of China(No.51475380)the Fundamental Research Funds for the Central Universities CHD(No.300102319208)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202010710142)。
文摘A common challenge in direct energy deposition(DED)is eliminating the anisotropy in mechanical performance associated with microstructure and the formation of coarse columnar grains.In this work,a heterogeneous nucleation mechanism was introduced into the melt pool,and,from this mechanism,an almost fully equiaxed grain morphology was obtained in the DED of Ti-6 Al-3 Mo.Three types of grain morphologies in DED Ti-6 Al-3 Mo,including full columnar grains,near-equiaxed grains and almost fully equiaxed grains were obtained from premixed and satellite powder blends from Ti,6 wt.%Al and 3 wt.%Mo,respectively.Combined with the analysis of the interactions between powder particles and the melt pool in DED,the formation mechanism of the equiaxed grains caused by the incomplete melting of high melting point Mo particles was revealed.As the prior-βgrains transformed from coarse columnar grains to fine-equiaxed grains,the strong<100>fiber texture along the deposition direction was weakened,while the size of theα-laths in the prior-βgrains slightly decreased,and the selection ofα-variants was weakened.Due to the transformation of the prior-βgrains from coarse columnar grains to fine-equiaxed grains,the tensile strength of the deposited samples increased from 982 MPa to 1082 MPa,while the yield strength increased from 840 MPa to 922 MPa,and the elongation of the as-deposited alloy also increased from 9.0%to 9.8%,which confirmed that the presence of fine-equiaxed grains is beneficial to the strength and plasticity of the DED alloy.This work further demonstrates the role that satelliting powders can play in terms of enhancing the columnar to equiaxed transition(CET)behavior associated with DED.