NiTi intermetallic coatings were fabricated on the surface of Ti-6Al-4V alloy by melting Ni and Ti powders using laser metal deposition(LMD) process.The effects of NiTi reinforcement content on the microstructure,ha...NiTi intermetallic coatings were fabricated on the surface of Ti-6Al-4V alloy by melting Ni and Ti powders using laser metal deposition(LMD) process.The effects of NiTi reinforcement content on the microstructure,hardness and corrosion properties of the coatings were examined.The results show that the deposited coatings are characterized by NiTi,NiTi2 and NiTi3 intermetallic phases.An appreciable increase in corrosion resistance is obtained for all the coatings,and Ti55Ni45 coating shows the highest corrosion resistance;while coatings Ti50Ni50 and Ti45Ni55 follow in that succession.The reinforcement materials are proven to be corrosion resistant in the tested environment,and the effect of Ti is more dominant.展开更多
Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHE...Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role.展开更多
Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric ...Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.展开更多
Direct LMD (laser metal deposition) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. SEM (scanning electron microscopy), OM (optical microscopy) and EDS (energy dispers...Direct LMD (laser metal deposition) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. SEM (scanning electron microscopy), OM (optical microscopy) and EDS (energy dispersive spectroscopy) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. After significant analysis, some differences were observed among two sets of deposit samples which varied in the particle size of the mixing Ti-6wt.%Al-4wt.%V powder. It could be found that the set with similar particle number for Ti, Al and V powder made composition much more stable and could easily get industry qualified Ti-6Al-4V components.展开更多
The laser metal deposition (LMD) was conducted on copper by varying the processing parameters in order to achieve the best possible settings. Two sets of experiments were conducted. The deposited composites were cha...The laser metal deposition (LMD) was conducted on copper by varying the processing parameters in order to achieve the best possible settings. Two sets of experiments were conducted. The deposited composites were characterized through the evolving microstructure, microhardness profiling and mechanical properties. It was found that the evolving microstructures of the deposited composites were characterized with primary, secondary and tertiary arms dendrites, acicular microstructure as well as the alpha and beta eutectic structures. From the two sets of experiments performed, it was found that Sample E produced at a laser power of 1200 W and a scanning speed of 1.2 m/min has the highest hardness of HV (190±42) but exhibits some lateral cracks due to its brittle nature, while Sample B produced at laser power of 1200 W and a scanning speed of 0.3 m/min shows no crack and a good microstructure with an increase in dendrites. The strain hardening coefficient of the deposited copper composite obtained in this experiment is 3.35.展开更多
The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6...The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6Al−4V alloy by tensile tests,optical microscopy,scanning electron microscopy,electron back-scattered diffraction analyses and transmission electron microscopy.With increasing applied voltages from 0 to 130 V,the evolution of microstructure within columnarβgrains followed the sequence ofα′martensite→colonyαstructure→basket-weaveαstructure.The electropulsing treated at 130 V weakened the texture of martensite withinβgrains.The as-built Ti−6Al−4V alloy showed an anisotropy in yield strength(6.2%).After processing at 130 V,the anisotropy in yield strength was reduced to 0.6%,which was attributed to the almost equivalent distribution of Schmid factor in the samples deformed along different orientations.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must...With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.展开更多
Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.H...Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.展开更多
Real-time mixing of multi-species powder challenges Laser Metal Deposition(LMD)of Functionally Graded Materials(FGMs).The current work proposes a novel method of using a static mixer to realize rapid,uniform multi-spe...Real-time mixing of multi-species powder challenges Laser Metal Deposition(LMD)of Functionally Graded Materials(FGMs).The current work proposes a novel method of using a static mixer to realize rapid,uniform multi-species powder mixing.Firstly,copper powder and 316L stainless steel powder are selected to complete the powder mixing observation experiment with Scanning Electron Microscope(SEM)and Energy Dispersive Spectrometer(EDS).Secondly,computational fluid dynamics and particle mixing simulation models are used to analyze the flow field and particle motion characteristics in the static mixer.Finally,LMD experiment and metallo-graphic observation are carried out with 316L stainless steel powder and WC powder to verify the feasibility of the static mixer.This study provides a theoretical and practical basis for powder mixing in laser processing with a static mixer.The conclusions can also be applied to other processing fields requiring real-time and uniform mixing of multi-species powders.展开更多
Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally comple...Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally complex structures typically contain a wide range of feature sizes,namely,the characteristic length of elements in AM-produced components can vary from millimeter to meter-scale.The requisite for controlling performance covers nearly six orders of magnitude,from the microstructure to macro scale structure.Understanding the mechanical variation with the feature size is of critical importance for topology optimization engineers to make required design decisions.In this work,laser metal deposition(LMD)is adopted to manufacture 316L stainless steel(SS)samples.To evaluate the efect of defects and specimen size on mechanical properties of LMD-produced samples,fve rectangular sample sizes which ranged from non-standard miniature size to ASTM standard sub-sized samples were machined from the block.Tensile test reveals that the mechanical properties including yield strength(YS),ultimate tensile strength(UTS),and elongation to failure(εf)are almost the identical for samples with ASTM standard size.Whilst,relatively lower YS and UTS values,except forεf,are observed for samples with a miniature size compared with that of ASTM standard samples.Theεf values of LMD-produced 316L SS samples show a more complex trend with sample size,and are afected by three key infuencing factors,namely,slimness ratio,cluster of pores,and occupancy location of lack of fusion defects.In general,theεf values exhibit a decreasing trend with the increase of slimness ratio.Microstructure characterization reveals that the LMD-produced 316L samples exhibited a high stress status at low angle grain boundaries,whilst its location changed to high angle grain boundaries after plastic deformation.The grain size refnement and austenite-to-martensite phase transformation occurred during plastic deformation might be responsible for the very high YS and UTS attained in this study.The experimental works carried out in this study is expected to provide a guideline for evaluating the mechanical properties of LMD-produced parts with complex structure,where critical parameter such as a certain slimness ratio has to be considered.展开更多
Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,...Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,medical diagnosis,and defense applications.Metalorganic chemical vapor deposition(MOCVD)is an important technology for growing high quality semiconductor materials,and has achieved great success in the semiconductor industry due to its advantages of high efficiency,short maintenance cycles,and high stability and repeatability.The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices.This review summarizes the recent progress of QCLs grown by MOCVD.Material quality and the structure design together determine the device performance.Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed.展开更多
基金financially supported by the National Research Foundation,South AfricaThe National Laser Centre,CSIR,Pretoria,South Africa is appreciated for laser facilityTshwane University of Technology,Pretoria,South Africa
文摘NiTi intermetallic coatings were fabricated on the surface of Ti-6Al-4V alloy by melting Ni and Ti powders using laser metal deposition(LMD) process.The effects of NiTi reinforcement content on the microstructure,hardness and corrosion properties of the coatings were examined.The results show that the deposited coatings are characterized by NiTi,NiTi2 and NiTi3 intermetallic phases.An appreciable increase in corrosion resistance is obtained for all the coatings,and Ti55Ni45 coating shows the highest corrosion resistance;while coatings Ti50Ni50 and Ti45Ni55 follow in that succession.The reinforcement materials are proven to be corrosion resistant in the tested environment,and the effect of Ti is more dominant.
基金GL and ELG acknowledge funding from the German Research Foundation in the framework of the priority program SPP 2006—Compositionally Complex Alloys—High Entropy Alloys,projects LA 3607/3-1 and GU 1075/12-1.EPG is supported by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division.
文摘Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions.This applies especially to refractory high-entropy alloys(RHEAs),which are difficult to synthesize and process by conventional methods.To evaluate a possible way to accelerate the process,high-throughput laser metal deposition was used in this work to prepare a quinary RHEA,TiZrNbHfTa,as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders.Compositionally graded variants of the quinary RHEA were also analyzed.Our results show that the influence of various parameters such as powder shape and purity,alloy composition,and especially the solidification range,on the processability,microstructure,porosity,and mechanical properties can be investigated rapidly.The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders,while substitutional solid solution strengthening played a minor role.
基金Project(2002AA420060) supported by the Hi-tech Research and Development Program of China
文摘Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.
文摘Direct LMD (laser metal deposition) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. SEM (scanning electron microscopy), OM (optical microscopy) and EDS (energy dispersive spectroscopy) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. After significant analysis, some differences were observed among two sets of deposit samples which varied in the particle size of the mixing Ti-6wt.%Al-4wt.%V powder. It could be found that the set with similar particle number for Ti, Al and V powder made composition much more stable and could easily get industry qualified Ti-6Al-4V components.
基金supported by the Council of Scientific and Industrial Research(CSIR),National Laser Centre,Rental Pool Programme,Pretoria,South Africa and also for the award of the Africa Laser Centre bursary to the main author
文摘The laser metal deposition (LMD) was conducted on copper by varying the processing parameters in order to achieve the best possible settings. Two sets of experiments were conducted. The deposited composites were characterized through the evolving microstructure, microhardness profiling and mechanical properties. It was found that the evolving microstructures of the deposited composites were characterized with primary, secondary and tertiary arms dendrites, acicular microstructure as well as the alpha and beta eutectic structures. From the two sets of experiments performed, it was found that Sample E produced at a laser power of 1200 W and a scanning speed of 1.2 m/min has the highest hardness of HV (190±42) but exhibits some lateral cracks due to its brittle nature, while Sample B produced at laser power of 1200 W and a scanning speed of 0.3 m/min shows no crack and a good microstructure with an increase in dendrites. The strain hardening coefficient of the deposited copper composite obtained in this experiment is 3.35.
基金financial supports from the National Key R&D Program of China (No.2017YFE0123500)。
文摘The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6Al−4V alloy by tensile tests,optical microscopy,scanning electron microscopy,electron back-scattered diffraction analyses and transmission electron microscopy.With increasing applied voltages from 0 to 130 V,the evolution of microstructure within columnarβgrains followed the sequence ofα′martensite→colonyαstructure→basket-weaveαstructure.The electropulsing treated at 130 V weakened the texture of martensite withinβgrains.The as-built Ti−6Al−4V alloy showed an anisotropy in yield strength(6.2%).After processing at 130 V,the anisotropy in yield strength was reduced to 0.6%,which was attributed to the almost equivalent distribution of Schmid factor in the samples deformed along different orientations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
基金Supported by National Basic Scientific Research Project(Grant No.JCKY2017110B001)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China(Grant No.KYCX20_0080)。
文摘With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.
文摘Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.
基金supported by the Jiangsu Industry-university-research Institute Cooperation Project,China(No.BY2021078)。
文摘Real-time mixing of multi-species powder challenges Laser Metal Deposition(LMD)of Functionally Graded Materials(FGMs).The current work proposes a novel method of using a static mixer to realize rapid,uniform multi-species powder mixing.Firstly,copper powder and 316L stainless steel powder are selected to complete the powder mixing observation experiment with Scanning Electron Microscope(SEM)and Energy Dispersive Spectrometer(EDS).Secondly,computational fluid dynamics and particle mixing simulation models are used to analyze the flow field and particle motion characteristics in the static mixer.Finally,LMD experiment and metallo-graphic observation are carried out with 316L stainless steel powder and WC powder to verify the feasibility of the static mixer.This study provides a theoretical and practical basis for powder mixing in laser processing with a static mixer.The conclusions can also be applied to other processing fields requiring real-time and uniform mixing of multi-species powders.
基金supported by the National Natural Science Foundation of China(Grant No.11772344).
文摘Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally complex structures typically contain a wide range of feature sizes,namely,the characteristic length of elements in AM-produced components can vary from millimeter to meter-scale.The requisite for controlling performance covers nearly six orders of magnitude,from the microstructure to macro scale structure.Understanding the mechanical variation with the feature size is of critical importance for topology optimization engineers to make required design decisions.In this work,laser metal deposition(LMD)is adopted to manufacture 316L stainless steel(SS)samples.To evaluate the efect of defects and specimen size on mechanical properties of LMD-produced samples,fve rectangular sample sizes which ranged from non-standard miniature size to ASTM standard sub-sized samples were machined from the block.Tensile test reveals that the mechanical properties including yield strength(YS),ultimate tensile strength(UTS),and elongation to failure(εf)are almost the identical for samples with ASTM standard size.Whilst,relatively lower YS and UTS values,except forεf,are observed for samples with a miniature size compared with that of ASTM standard samples.Theεf values of LMD-produced 316L SS samples show a more complex trend with sample size,and are afected by three key infuencing factors,namely,slimness ratio,cluster of pores,and occupancy location of lack of fusion defects.In general,theεf values exhibit a decreasing trend with the increase of slimness ratio.Microstructure characterization reveals that the LMD-produced 316L samples exhibited a high stress status at low angle grain boundaries,whilst its location changed to high angle grain boundaries after plastic deformation.The grain size refnement and austenite-to-martensite phase transformation occurred during plastic deformation might be responsible for the very high YS and UTS attained in this study.The experimental works carried out in this study is expected to provide a guideline for evaluating the mechanical properties of LMD-produced parts with complex structure,where critical parameter such as a certain slimness ratio has to be considered.
基金supported by National Key Research and Development Program of China (Grant No.2021YFB3201900)National Natural Science Foundation of China (Grant Nos.61991430,62235016)+1 种基金Youth Innovation Promotion Association of CAS (Grant Nos.2022112,Y2022046)Key projects of the Chinese Academy of Sciences (Grant No.XDB43000000)。
文摘Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,medical diagnosis,and defense applications.Metalorganic chemical vapor deposition(MOCVD)is an important technology for growing high quality semiconductor materials,and has achieved great success in the semiconductor industry due to its advantages of high efficiency,short maintenance cycles,and high stability and repeatability.The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices.This review summarizes the recent progress of QCLs grown by MOCVD.Material quality and the structure design together determine the device performance.Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed.
基金the financial support for this work from the National Natural Science Foundation of China(No.52205334)the Natural Science Foundation of Hunan Province,China(No.2022JJ40495)+2 种基金the Changsha Key Research and Development Project,China(No.kh2201275)the Changsha Municipal Natural Science Foundation,China(No.kq2202196)the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment,China(No.SKLTKF21B08)。