Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerody...Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerodynamic parameters of the airplane model are studied. In detail, a static model of the wire-driven parallel suspension is analyzed, a mathematical model for describ- ing the aerodynamic loads exerted on the scale model is constructed and a calculation method for obtaining the aerodynamic parameters of the model by measuring the tension of wires is presented. Moreover, the measurement system for wire tension and its corresponding data acquisition system are designed and built. Thereafter, the wire-driven parallel suspension system is placed in an open return circuit low-speed wind tunnel for wind tunnel tests to acquire data of each wire tension when the airplane model is at different attitudes and different wind speeds. A group of curves about the parameters for aerodynamic load exerted on the airplane model are obtained at different wind speeds after the acquired data are analyzed. The research results validate the feasibility of using a wire-driven parallel manipulator as the suspension system for low-speed wind ttmnel tests.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
基金National Natural Science Foundation of China (50475099)
文摘Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerodynamic parameters of the airplane model are studied. In detail, a static model of the wire-driven parallel suspension is analyzed, a mathematical model for describ- ing the aerodynamic loads exerted on the scale model is constructed and a calculation method for obtaining the aerodynamic parameters of the model by measuring the tension of wires is presented. Moreover, the measurement system for wire tension and its corresponding data acquisition system are designed and built. Thereafter, the wire-driven parallel suspension system is placed in an open return circuit low-speed wind tunnel for wind tunnel tests to acquire data of each wire tension when the airplane model is at different attitudes and different wind speeds. A group of curves about the parameters for aerodynamic load exerted on the airplane model are obtained at different wind speeds after the acquired data are analyzed. The research results validate the feasibility of using a wire-driven parallel manipulator as the suspension system for low-speed wind ttmnel tests.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.