Cross-technology interference(CTI)from diverse wireless networks such as ZigBee,Bluetooth,and Wi-Fi has become a severe problem in the 2.4 GHz Industrial Scientific and Medical(ISM)band.Especially,low power and lossy ...Cross-technology interference(CTI)from diverse wireless networks such as ZigBee,Bluetooth,and Wi-Fi has become a severe problem in the 2.4 GHz Industrial Scientific and Medical(ISM)band.Especially,low power and lossy networks are vulnerable to the signal interferences from other aggressive wireless networks when they perform low power operations to conserve the energy consumption.This paper presents CoSense,which accurately detects ZigBee signals with a reliable signal correlation scheme in the presence of the CTI.The key concept of CoSense is to reduce false wake-ups of low power listening(LPL)by identifying the pre-defined ZigBee signatures.Our scheme is robust in the coexistence environment of diverse wireless technologies since the signal correlation works well in bad wireless channel conditions.It achieves standard compliance and transparency without any hardware and firmware changes.We have implemented CoSense on the Universal Software Radio Peripheral(USRP)platform to verify its feasibility.The experimental exploration reveals that CoSense significantly reduces the false-positive and false-negative rate under typical setting and the additional overhead is negligible.The results show that our scheme saves much energy by up to 63%in dynamic network interference scenarios where low-power ZigBee transmissions are overwhelmed by strong Wi-Fi signal interferences.展开更多
To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored...To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored for sensing in wide farmland without human supervision. A dedicated single-chip sensor node platform is designed specially for wireless multi-media sensor network. To guarantee the bulky data transmission, a bit-map index reliable data transmission mecha-nism is proposed. And a battery-array switch-ing system is design to power the sensor node to elongate the lifetime. The effectiveness and performance of PASS have been evaluated through comprehensive experiments and large-scale real-life deployment.展开更多
During the whole service lifetime of aircraft structures with composite materials,impacts are inevitable and can usually cause severe but barely visible damages.Since the occurrences of impact are random and unpredict...During the whole service lifetime of aircraft structures with composite materials,impacts are inevitable and can usually cause severe but barely visible damages.Since the occurrences of impact are random and unpredictable,it is a hotspot direction to develop an online impact monitoring system that can meet strict limitations of aerospace applications including small size,light weight,and low power consumption.Piezoelectric(PZT)sensor,being able to generate impact response signals with no external power and cover a large-scale structure with only a small amount of them,is a promising choice.Meanwhile,for real systems,networks with multiple nodes are normally required to monitor large-scale structures in a global way to identify any impact localization confliction,yet the existing studies are mostly evaluated with single nodes instead of networks.Therefore,in this paper,based on a new low-power node designed,a Bluetooth-based digital impact monitoring PZT sensor network is proposed for the first time with its global confliction-solving impact localization method.Evaluations of the system as a network are researched and analyzed on a complex real aircraft wing box for a global confliction-solving impact localization,showing a satisfying high accuracy.展开更多
Under intense environmental pressure, the global energy sector is promoting the integration of renewable energy into interconnected energy systems. The demand-side management (DSM) of energy systems has drawn consid...Under intense environmental pressure, the global energy sector is promoting the integration of renewable energy into interconnected energy systems. The demand-side management (DSM) of energy systems has drawn considerable industrial and academic attention in attempts to form new flexibilities to respond to variations in renewable energy inputs to the system. However, many DSM concepts are still in the experimental demonstration phase. One of the obstacles to DSM usage is that the current information infrastructure was mainly designed for centralized systems, and does not meet DSM requirements. To overcome this barrier, this paper proposes a novel information infrastructure named the lnternet of Energy Things (IoET) in order to make DSM practicable by basing it on the latest wireless communication technology: the low-power wide-area network (LPWAN). The primary advantage of LPWAN over general packet radio service (GPRS) and area Internet of Things (loT) is its wide-area coverage, which comes with minimum power consumption and maintenance costs. Against this background, this paper briefly reviews the representative LPWAN tech- nologies of narrow-band Internet of Things (NB-IoT) and Long Range (LORa) technology, and compares them with GPRS and area IoT technology. Next, a wireless-to-cloud architecture is proposed for the IoET, based on the main technical features of LPWAN. Finally, this paper looks forward to the potential of IoET in various DSM application scenarios.展开更多
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自...在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。展开更多
Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communicatio...Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.展开更多
随着现代通信技术发展越来越快,无线传输通信技术得到广泛应用。在工业应用领域无线传输技术的应用场景越来越多,如不同功耗速率传输的2G、3G、4G等广域网技术等。而低功耗低速率的广域网传输技术Lora侧基于扩频技术的超远距离无线传输...随着现代通信技术发展越来越快,无线传输通信技术得到广泛应用。在工业应用领域无线传输技术的应用场景越来越多,如不同功耗速率传输的2G、3G、4G等广域网技术等。而低功耗低速率的广域网传输技术Lora侧基于扩频技术的超远距离无线传输方案,可提供无线通信技术运行于ISM频段(Industrial Scientific Medical Band),具有经济性好、组网方便、易于实现,并具有较好的抗干扰性等特点。它最大特点就是在同样的功耗条件下比其他无线方式传播的距离更远,实现了低功耗和远距离的统一,它在同样的功耗下比传统的无线射频通信距离扩大3-5倍,传输距离范围长达15至20公里。文章从无线传输技术应用需求为解决近距离可靠传输进行分析,结合两个站点间相距1公里内的无线通信存在的信号衰减、传输数据量和抗干扰能力等因素,提供了具有针对性的无线通信解决方案。展开更多
LoRa(Long Range)作为低功耗广域网技术(Low Power Wide Area Network,LPWAN)中的重要组成,将数字扩频、数字信号处理和前向纠错编码等多项技术相融合,拥有通信距离远、抗干扰能力强、功耗低等特性,可有效解决当前其他通信方式数据采集...LoRa(Long Range)作为低功耗广域网技术(Low Power Wide Area Network,LPWAN)中的重要组成,将数字扩频、数字信号处理和前向纠错编码等多项技术相融合,拥有通信距离远、抗干扰能力强、功耗低等特性,可有效解决当前其他通信方式数据采集成功率不高、数据拥塞等缺点,因此在远距离低速通信场景中展现出独特的优越性。展开更多
基金the National Research Foundation of Korea(NRF)grantfunded by the Korea Government(MSIT)(No.NRF-2018R1C1B5038818).
文摘Cross-technology interference(CTI)from diverse wireless networks such as ZigBee,Bluetooth,and Wi-Fi has become a severe problem in the 2.4 GHz Industrial Scientific and Medical(ISM)band.Especially,low power and lossy networks are vulnerable to the signal interferences from other aggressive wireless networks when they perform low power operations to conserve the energy consumption.This paper presents CoSense,which accurately detects ZigBee signals with a reliable signal correlation scheme in the presence of the CTI.The key concept of CoSense is to reduce false wake-ups of low power listening(LPL)by identifying the pre-defined ZigBee signatures.Our scheme is robust in the coexistence environment of diverse wireless technologies since the signal correlation works well in bad wireless channel conditions.It achieves standard compliance and transparency without any hardware and firmware changes.We have implemented CoSense on the Universal Software Radio Peripheral(USRP)platform to verify its feasibility.The experimental exploration reveals that CoSense significantly reduces the false-positive and false-negative rate under typical setting and the additional overhead is negligible.The results show that our scheme saves much energy by up to 63%in dynamic network interference scenarios where low-power ZigBee transmissions are overwhelmed by strong Wi-Fi signal interferences.
基金supported in part by the Special Scientific Research Funds for Commonweal Section under Grant No. 200903010the Science and Technology Project of Jiangxi Province under Grants No. 20112BBF60050, No. 20121BBF60058
文摘To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored for sensing in wide farmland without human supervision. A dedicated single-chip sensor node platform is designed specially for wireless multi-media sensor network. To guarantee the bulky data transmission, a bit-map index reliable data transmission mecha-nism is proposed. And a battery-array switch-ing system is design to power the sensor node to elongate the lifetime. The effectiveness and performance of PASS have been evaluated through comprehensive experiments and large-scale real-life deployment.
基金supported by the National Natural Science Foundation of China(Nos.51921003,51975292 and 52275153)the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211519)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,China(Nanjing University of Aeronautics and Astronautics,No.MCMS-I-0521K01)the Fund of Prospective Layout of Scientific Research for Nanjing University of Aeronautics and Astronautics,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘During the whole service lifetime of aircraft structures with composite materials,impacts are inevitable and can usually cause severe but barely visible damages.Since the occurrences of impact are random and unpredictable,it is a hotspot direction to develop an online impact monitoring system that can meet strict limitations of aerospace applications including small size,light weight,and low power consumption.Piezoelectric(PZT)sensor,being able to generate impact response signals with no external power and cover a large-scale structure with only a small amount of them,is a promising choice.Meanwhile,for real systems,networks with multiple nodes are normally required to monitor large-scale structures in a global way to identify any impact localization confliction,yet the existing studies are mostly evaluated with single nodes instead of networks.Therefore,in this paper,based on a new low-power node designed,a Bluetooth-based digital impact monitoring PZT sensor network is proposed for the first time with its global confliction-solving impact localization method.Evaluations of the system as a network are researched and analyzed on a complex real aircraft wing box for a global confliction-solving impact localization,showing a satisfying high accuracy.
基金This work was supported by the National High Technology Research and Development Program of China (2014AA051901), the International S&T Cooperation Program of China (2014DFG62670), and the National Natural Science Foundation of China (51207077, 51261130472, and 51577096). Thanks for the contributions of Dr. Yibao Jiang and Dr. Xiaoshuang Chert on this paper.
文摘Under intense environmental pressure, the global energy sector is promoting the integration of renewable energy into interconnected energy systems. The demand-side management (DSM) of energy systems has drawn considerable industrial and academic attention in attempts to form new flexibilities to respond to variations in renewable energy inputs to the system. However, many DSM concepts are still in the experimental demonstration phase. One of the obstacles to DSM usage is that the current information infrastructure was mainly designed for centralized systems, and does not meet DSM requirements. To overcome this barrier, this paper proposes a novel information infrastructure named the lnternet of Energy Things (IoET) in order to make DSM practicable by basing it on the latest wireless communication technology: the low-power wide-area network (LPWAN). The primary advantage of LPWAN over general packet radio service (GPRS) and area Internet of Things (loT) is its wide-area coverage, which comes with minimum power consumption and maintenance costs. Against this background, this paper briefly reviews the representative LPWAN tech- nologies of narrow-band Internet of Things (NB-IoT) and Long Range (LORa) technology, and compares them with GPRS and area IoT technology. Next, a wireless-to-cloud architecture is proposed for the IoET, based on the main technical features of LPWAN. Finally, this paper looks forward to the potential of IoET in various DSM application scenarios.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
文摘在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。
文摘Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.
文摘随着现代通信技术发展越来越快,无线传输通信技术得到广泛应用。在工业应用领域无线传输技术的应用场景越来越多,如不同功耗速率传输的2G、3G、4G等广域网技术等。而低功耗低速率的广域网传输技术Lora侧基于扩频技术的超远距离无线传输方案,可提供无线通信技术运行于ISM频段(Industrial Scientific Medical Band),具有经济性好、组网方便、易于实现,并具有较好的抗干扰性等特点。它最大特点就是在同样的功耗条件下比其他无线方式传播的距离更远,实现了低功耗和远距离的统一,它在同样的功耗下比传统的无线射频通信距离扩大3-5倍,传输距离范围长达15至20公里。文章从无线传输技术应用需求为解决近距离可靠传输进行分析,结合两个站点间相距1公里内的无线通信存在的信号衰减、传输数据量和抗干扰能力等因素,提供了具有针对性的无线通信解决方案。
文摘LoRa(Long Range)作为低功耗广域网技术(Low Power Wide Area Network,LPWAN)中的重要组成,将数字扩频、数字信号处理和前向纠错编码等多项技术相融合,拥有通信距离远、抗干扰能力强、功耗低等特性,可有效解决当前其他通信方式数据采集成功率不高、数据拥塞等缺点,因此在远距离低速通信场景中展现出独特的优越性。