The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra...In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.T...In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.This research introduces a sophisticated framework,driven by computational intelligence,that merges clustering techniques with UAV mobility to refine routing strategies in WSNs.The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads(CHs).This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination.Employing a greedy algorithm for inter-cluster dialogue,our framework orchestrates CHs into an efficient communication chain.Through comparative analysis,the proposed model demonstrates a marked improvement over traditional methods such as the cluster chain mobile agent routing(CCMAR)and the energy-efficient cluster-based dynamic algorithms(ECCRA).Specifically,it showcases an impressive 15%increase in energy conservation and a 20%reduction in data transmission time,highlighting its advanced performance.Furthermore,this paper investigates the impact of various network parameters on the efficiency and robustness of the WSN,emphasizing the vital role of sophisticated computational strategies in optimizing network operations.展开更多
A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac...A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.展开更多
Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluati...Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs.展开更多
A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences betw...A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences between two nodes viewed by the third one. Then, localization problems are formulated as convex optimization ones and all geometric relationships among different nodes in the communication range are transformed into linear or quadratic constraints. If all measurements are accurate, the localization problem can be formulated as linear programming (LP). Otherwise, by incorporating auxiliary variables, it can be regarded as quadratic programming (QP). Simulations show the effectiveness of the proposed algorithm.展开更多
This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed a...This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.展开更多
Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over exte...Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.展开更多
Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the b...Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.展开更多
Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the...Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.展开更多
For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists ...For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.展开更多
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple...To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.展开更多
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("...To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.展开更多
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
基金supported by the National Natural Science Foundation of China(No.61871400)the Natural Science Foundation of the Jiangsu Province of China(No.BK20171401)。
文摘In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF Grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401).
文摘In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.This research introduces a sophisticated framework,driven by computational intelligence,that merges clustering techniques with UAV mobility to refine routing strategies in WSNs.The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads(CHs).This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination.Employing a greedy algorithm for inter-cluster dialogue,our framework orchestrates CHs into an efficient communication chain.Through comparative analysis,the proposed model demonstrates a marked improvement over traditional methods such as the cluster chain mobile agent routing(CCMAR)and the energy-efficient cluster-based dynamic algorithms(ECCRA).Specifically,it showcases an impressive 15%increase in energy conservation and a 20%reduction in data transmission time,highlighting its advanced performance.Furthermore,this paper investigates the impact of various network parameters on the efficiency and robustness of the WSN,emphasizing the vital role of sophisticated computational strategies in optimizing network operations.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA01Z221)the NationalNatural Science Foundation of China (No.60875070)+1 种基金the Innovation Project of Graduate Students of Jiangsu Province (No.CX08B-049Z)Southeast University Teaching and Research Foundation
文摘A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.
基金The International S&T Cooperation Program of China(No.2015DFA10490)the National Natural Science Foundation of China(No.61571113,61240032)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110060)
文摘Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs.
文摘A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences between two nodes viewed by the third one. Then, localization problems are formulated as convex optimization ones and all geometric relationships among different nodes in the communication range are transformed into linear or quadratic constraints. If all measurements are accurate, the localization problem can be formulated as linear programming (LP). Otherwise, by incorporating auxiliary variables, it can be regarded as quadratic programming (QP). Simulations show the effectiveness of the proposed algorithm.
基金supported by National S&T Major Project of China under Grant No.2010 ZX03005-003National Key Technology Research and Develop ment Program of China under Grant No.2011BAK12B02Program for New Century Excellent Talents in University (NCET-10-0294),China
文摘This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.
文摘Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.
基金The National Natural Science Foundation of China(No.60775057)
文摘Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.
基金This work is supported by the National Natural Science Foundation of China(61772454,61811530332,61811540410,U1836208).
文摘Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.
基金The National Natural Science Foundation of China(No.61601122,61471164,61741102)
文摘For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes.
基金supported by the National Natural Science Fundation of China (60974082 60874085)+2 种基金the Fundamental Research Funds for the Central Universities (K50510700004)the Technology Plan Projects of Guangdong Province (20110401)the Team Project of Hanshan Normal University (LT201001)
文摘To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.
基金Project (No. 30470461) supported in part by the National NaturalScience Foundation of China
文摘To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.